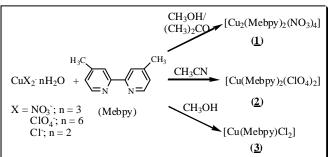
Preparação e Caracterização de Três Blocos Construtores de Cobre(II) contendo o Ligante Nitrogenado Ancilar 4,4'-Dimetil-2,2'-Bipiridina.

Daniella Miler de Faria^{1*} (PG), Maria Irene Yoshida² (PQ), Flávia Cavalieri Machado¹ (PQ) e Wagner Magno Teles^{1†} (PQ).

†In memorian *daniellamiler@yahoo.com.br

Palavras Chave: Complexos de Cobre(II), ligante nitrogenado.

Introdução


A obtenção de polímeros de coordenação com redes específicas tem se tornado um importante ramo da Química Inorgânica. O controle na formação de tais polímeros está na seleção de blocos construtores que possuem grande interesse devido à diversidade de estruturas formadas e possíveis aplicações.¹

Há exemplos de blocos construtores contendo ligantes nitrogenados ancilares coordenados ao cobre(II)² sendo inédita a utilização do ligante 4,4'-dimetil-2,2'-bipiridina (Mebpy) na aquisição dos polímeros de coordenação.

Este trabalho descreve a preparação e caracterização por métodos analíticos e espectroscópicos de três complexos de cobre(II) contendo o ligante Mebpy.

Resultados e Discussão

As sínteses dos compostos em estudo podem ser visualizadas na Figura 1 abaixo:

Figura 1. Rota sintética de obtenção dos blocos construtores contendo o ligante Mebpy.

Os compostos (1) e (2) foram formados após a evaporação total dos referidos solventes por, respectivamente 3 e 6 dias. Gistais verde claro e escuro, relativos ao composto (3), foram formados após 2h de repouso.

Os complexos foram devidamente caracterizados por espectroscopia vibracional na região do infravermelho e análises elementar e térmica.

Os dados analíticos estão coerentes com a formação de complexos nas estequiometrias (1:1)/(Cu²⁺:Mebpy) para os compostos **(1)** e **(3)** e (1:2)/(Cu²⁺:Mebpy) para o composto **(2)**.

Tabela 1. Análise Elementar dos compostos.

Composto	%С		%Н		%N	
_	Ехр.	Calc.	Ехр.	Calc.	Exp.	Calc.
<u>(1)</u>	37,72	38,77	3,19	3,25	14,48	15,07
(<u>2</u>)compo	ი ქრ ი16 _ი (c 4 5,69	n ∂H }	n &6 ∕CN	86kgcH	8,88
(<u>3</u>) (1)	45,12	3 445 523	2 9 6451	31807	8, 4 35	8,79
_	;	3083	2923	1483		
			2853	1447		
<u>(2)</u>	;	3121	2963	1615	835	
	;	3076	2924	1493		
	;	3066	2853	1439		
(<u>3</u>)	;	3112 3065 3028	2963 2920 2852	1615 1489 1444	830	

Tabela 2. Dados de IV dos compostos (1), (2) e (3).

Os espectros de IV apresentam bandas relativas aos modos $v_{\text{CH aromático}}$ e $v_{\text{CH alifático}}$ que confirmam a presença do ligante Mebpy nos compostos. Adicionalmente, observa-se que as bandas relativas aos modos $v_{\text{CC/CN}}$ no ligante livre encontram-se deslocadas para maiores números de onda nos referidos complexos sugerindo fortemente que o ligante Mebpy está coordenado ao Cu(II) no modo quelato através dos nitrogênios piridínicos.

Conclusões

Os resultados analíticos e espectroscópicos são condizentes com a obtenção dos complexos de cobre(II): $[Cu_2(Mebpy)_2(NO_3)_4]$ (1), $[Cu(Mebpy)_2(CIO_4)_2]$ (2) e $[Cu(Mebpy)Cl_2]^3$ (3).

Agradecimentos

FAPEMIG, CAPES

¹Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário Martelos, Juiz de Fora – MG, 36036-330. ²Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte – MG, 31270-901.

Sociedade Brasileira de Química (SBQ)

¹ Lu, J. Y.; Lawandy, M. A.; Li, J., *Inorg. Chem.*, **1999**, 38, 2695.

² Li, L.; Chen, B.; Song, Y.; Li, G.;, Hou, H.; Fan, Y. e Mi, L.; *Inorg. Chim. Acta* **2003**, *344*, 95.

³ Fang, C. J.; Peng, Z. H.; Pan, Q. C., *J. Chin. Univ.*, **1998**, *19*, 375.