Sociedade Brasileira de Química (SBQ)

#### em Nitrosilos de Rutênio com Potenciais de Redução Polipiridina.

Zenis Novais da Rocha<sup>a,b</sup>(PQ), Mario Sergio Pereira Marchesf<sup>a</sup>(PG), Elia Tfouni<sup>c</sup>, (PQ) and Roberto Santana da Silva<sup>a,c</sup>(PQ)<sup>\*</sup> zenis@ufba.br

<sup>a</sup>Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo. <sup>b</sup>Universidade Federal da Bahia -Instituto de Química. Salvador-Ba. 40170-290. Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP.

Palavras Chave: rutênio, nitrosilos complexos, óxido nítrico.

### Introdução

A importância do NO nos mamíferos é hoje um fato bem estabelecido, 1 e estimulou intenso interesse na química, eletroquímica, fotoquímica e bioquímica do NO e seus complexos metálicos.<sup>2</sup> Em nitrosilos de rutênio, têm sido relatados potenciais de redução NO<sup>+/0</sup> e NO<sup>0/-</sup>, enquanto apenas em um único complexo foi atribuído um potencial Ru3+/2+. Neste trabalho descrevemos os potenciais Ru3+/2+ de cis-[Ru<sup>II</sup>NO(bpy)<sub>2</sub>L] e uma análise relacionando os parâmetros do ligante com os potenciais Ru3+/2+ e NO<sup>+/0</sup> nessa série utilizando os parâmetros eletroquímicos dos ligantes (E<sub>L</sub>) de Lever<sup>3</sup>.

#### Resultados e Discussão

Os complexos em estudos apresentam a formulação cis-[Ru(NO)L(bpy)<sub>2</sub>]<sup>n+</sup> (L=NO<sub>2</sub>, 4-pic, py, 4-acpy e Cl<sup>-</sup>) e a figura 1 mostra o voltamograma de pulso diferencial, em hidrofurano, desses compostos. Os valores da  $\Sigma E_L$ ,  $E_{pc}$   $Ru^{3+/2+}$  and  $E_{pc}$   $NO^{+/0}$  for cis-[RullNO(bpy)<sub>2</sub>L] se encontram na tabela 1. Os potenciais relativos a NO<sup>+/0</sup> variam de 0,28 a 0,89, enquanto os de Ru<sup>3+/2+</sup> são cerca de 0,8 V maiores. O potenciais Ru<sup>3+/2+</sup> em hidrofurano, para o cis-[Ru<sup>II</sup>NO(bpy)<sub>2</sub>Cl], é 1,5 V menor do que o medido em SO<sub>2</sub> líquido<sup>4</sup>.

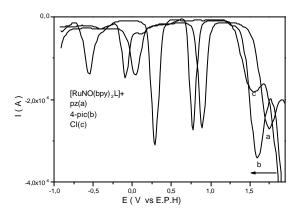



Figura 1- Voltamograma de pulso diferencial do  $[Ru(NO)(bpy)_2L]^{n+}(L$ = pz(a), 4-pic(b); ou Cl(c))

tetrahidrofurano.

A fim de entender as diferentes contribuições nos níveis energéticos dos orbitais moleculares LUMO e HOMO na série [RullNO(bpy)<sub>2</sub>L], foi correlacionada a alteração de potencial de redução centrado no íon metálico e no nitrosil com o parâmetro eletroquímico do ligante (ΣΕ<sub>L</sub>), através da equação (E<sub>obs</sub> =  $S[SE_L(L)]+I)$ , em que S e I, correspondem ao coeficiente angular e à intersecção da curva de Eobs  $(E_{Ru}^{II/III}$  and  $E_{NO}^{+/0})$  vs  $E_L(L)$ . Os potenciais de redução do Ru e do  $NO^+$  obedecem a uma função linear com coeficiente de correlação de 0,99 e S<sub>M</sub> (correlação com  $E_{RullI/II}$ ) e  $S_L$  (correlação com  $E_{NO}^{+/0}$ ) de 1,04 e  $I_M$  e I<sub>L</sub> de 0,32 e -0,55.

Os valores iguais de S indicam que a transferência de carga da bpy e L, através do NO+ para o Ru(II) ou o oposto são iguais. Por outro lado, o maior valor de I<sub>M</sub> indica uma contribuição significativa do rutênio para o nível do orbital HOMO. Verifica-se ainda uma linearidade ao correlacionar os valores de potenciais do Ru<sup>III/II</sup> com NO<sup>+/0</sup>.

Tabela 1. Dados eletroquímicos para os compexos cis-[Ru(NO)(bpy)<sub>2</sub>L]<sup>n</sup>

| L      | $\Sigma E_L$ ( V. vs.E.P.H) | $E_{pc}Ru^{3+/2+}$ | $E_{pc} NO^{+/0}$ |
|--------|-----------------------------|--------------------|-------------------|
| Cl     | 0.8                         | 1.50               | 0,28              |
| $NO_2$ | 1.06                        | 1,42               | 0,57              |
| 4-pic  | 1.27                        | 1,62               | 0,76              |
| ру     | 1.29                        | 1,66               | 0,79              |
| 4-асру | 1.34                        | 1,72               | 0,84              |
| pz     | 1.37                        | 1,74               | 0,89              |

#### Conclusões

Os potenciais NO<sup>+/0</sup> de cis-[Ru(NO)(bpy)<sub>2</sub>L]<sup>n+</sup> variam de 0,28 a 0,89, e os de Ru<sup>3+/2+</sup> são cerca de 0,8 V maiores. A alteração da força redutora é consistente com a variação da ΣE<sub>I</sub> e segue a següência: pz > acpy > py> 4-pic >  $NO_2^-$  > Cl<sup>-</sup>. O alto valor do coeficiente de correlação entre  $E_{obs}$  e  $\Sigma E_L$  indica que os E do ligante podem ser usados para a previsão dos potenciais de redução do Ru<sup>III/II</sup> e NO<sup>+/0</sup>.

#### Agradecimentos

29ª Reunião Anual da Sociedade Brasileira de Química

## Sociedade Brasileira de Química (SBQ)

# Capes, CNPq e Fapesp

<sup>&</sup>lt;sup>1</sup> Ignarro, L. Nitric Oxide: Biology ad Photobiology, San Diego, California, USA. 1. Ed. Academic Press, 2000.

<sup>&</sup>lt;sup>2</sup>Tfouni, E. Krieger, M., Mcgarvey, B. R. Franco, D. W. Coord. . Chem., R. 2003. 236, 57.

<sup>&</sup>lt;sup>3</sup> Lever, A.B.P. *Inorg.Chem.* **1990**, 29, 1271.

<sup>4</sup> Pipes, D. W.; Thomas, J. M. *Inorg.Chem.* **1984**, 23, 2466.