Estudo do efeito de aditivos químicos no controle de deposição de parafinas em dutos de petróleo

Cláudio M. Ziglio (PQ),* Daniele F. Sant'Ana (TC), Denise O. Gentili (PQ). (ziglio@petrobras.com.br)

¹ Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, CENPES, PETROBRAS.

Palavras Chave: reologia, petróleo, parafinas.

Introdução

Nas condições de reservatório, altas temperaturas e pressões, as parafinas pesadas do petróleo (ceras parafínicas) encontram-se dissolvidas nas frações mais leves, o que confere um comportamento de fluido Newtoniano ao óleo. Com a produção, o equilíbrio termodinâmico é perturbado e uma fase sólida de parafinas aparece, alterando as propriedades de escoamento do óleo. Quando a temperatura do óleo cai abaixo de um valor crítico (T_{Gel}), cristais de parafinas são gerados em quantidades suficientes para formar uma estrutura de parafinas conhecida como gel parafínico.1 gelificação do óleo pode levar à deposição de parafinas em dutos de escoamento, o que responde por prejuízos apreciáveis para a indústria do petróleo. Alguns produtos químicos vêm sendo utilizados pela indústria para minimizar a parafinação dos dutos e evitar perdas de produção. Neste trabalho foram estudados os efeitos de três aditivos químicos comerciais, de base polimérica, sobre petróleos das bacias do Espírito Santo (O1), Alagoas (O2) e Bahia (O3).

Resultados e Discussão

Os três óleos estudados neste trabalho significativamente no teor de diferem parafínicas, **O1** 4%, **O2** 13% e **O3** 18%, mas apresentam comportamento Newtoniano acima de 45°C. O efeito dos aditivos foi investigado através de testes de reologia dinâmica (oscilatória), onde foi monitorada principalmente a formação do gel parafínico. As amostras de óleo foram resfriadas lentamente (45°C - 4°C) enquanto os valores dos módulos de armazenamento (G') e perda (G") foram Os módulos G' e G" determinados. relacionados com os comportamentos elástico e viscoso do material, respectivamente. A temperatura na qual os valores de G' e G" se igualam durante o resfriamento foi definida como sendo a temperatura de gelificação da amostra (T_{Gel}).² A figura 1 exibe o gráfico dos módulos G' e G" em função da temperatura para o óleo O1 sem aditivos.

Os aditivos químicos estudados, **A1**, **A2** e **A3**, foram adicionados aos petróleos pré-aquecidos a 45°C. Na tabela **1** são apresentados os valores de T_{Gel} dos óleos antes e após o tratamento com os aditivos.

A T_{Gel} do óleo **O1** é significativamente mais baixa que a dos demais, o que está relacionado com o menor teor de ceras parafínicas deste óleo. Os três aditivos deslocaram a T_{Gel} dos óleos para valores mais baixos na concentração utilizada (500 ppm). A gelificação do óleo **O1** foi completamente inibida, na faixa de temperatura estudada, com ϖ aditivos **A1 e A2**. O aditivo **A1** mostrou também um excelente desempenho com o óleo **O2**, inibindo a gelificação em temperaturas acima de 15° C. No caso do óleo **O3**, o melhor resultado foi obtido com o aditivo **A3**, que reduziu a T_{Gel} deste óleo em 11° C.

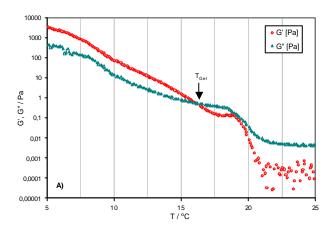


Figura 1. Comportamento reológico do óleo O1.

Tabela 1 – Efeito dos aditivos químicos sobre σ valores de T_{Gel} dos óleos **O1**, **O2** e **O3**.

	T _{Gel} (°C)		
Aditivo	01	02	O3
-	16	45	39
A1	-	15	36
A2	-	24	32
A3	14	38	28

Conclusões

Ensaios de reologia oscilatória permitiram caracterizar os petróleos parafínicos e avaliar a eficiência dos aditivos químicos. Os aditivos químicos atuam sobre a formação do gel parafínico do petróleo, abaixando a temperatura de gelificação. Os resultados não foram idênticos com os três óleos estudados, mostrando que o emprego de um determinado aditivo não pode ser generalizado para todos os tipos de óleo.

Sociedade Brasileira de Química (SBQ)

¹ Singh, P., Venkatesan, R., Fogler, H. S. AIChE Journal, 2000, 46, 1059. ² Kané, M., Djabourov, M., Volle, J-L. *Fuel*, **2004**, 83, 1591.