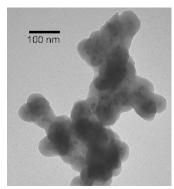
Esferas de sílica magnéticas tiol-modificadas: preparação e propriedades na ligação de metais.

Fernanda Parra da Silva^a (IC), Lucas L. R. Vono^a (IC), Giovanna Machado^b (PQ), Liane M. Rossi^a* (PQ)

^a Universidade de São Paulo, Instituto de Química, São Paulo, SP, Brasil (Irossi@iq.usp.br); ^bUFRGS, Instituto de Geologia, Porto Alegre, RS, Brasil


Palavras Chave: magnetita, sílica, paládio

Introdução

Nanopartículas de magnetita são caracterizadas pelo superparamagnetismo, isto é, apresentam elevada magnetização de saturação, o que permite que o seu movimento possa ser controlado por um porém não campo magnético, apresentam magnetização residual depois de cessada a aplicação do campo. O superparamagnetismo confere a esses materiais grande facilidade de isolamento e separação de meios multifásicos complexos pelo simples uso de um ímã permanente, e sua fácil redispersão depois de cessada a aplicação do campo. Assim, nanomateriais com tais características são para as mais variadas excelentes suportes aplicações: por exemplo na imobilização de catalisadores para serem facilmente separados do meio reacional e reutilizados e na ligação de ligantes seletivos para a construção de nanoadsorventes. Buscando desenvolver materiais com características propícias para as aplicações acima citadas, reportamos aqui o revestimento das partículas magnéticas com uma camada de sílica e a funcionalização da sílica com grupos tiol.

Resultados e Discussão

Preparação de esferas de sílica magnéticas: O primeiro método de escolha para o revestimento de partículas magnéticas com uma camada de sílica foi a hidrólise básica do precursor tetraetil-ortossilicato (TEOS) em isopropanol e amônia segundo a metodologia descrita por Xia e colaboradores.² No entanto, não foi possível obter um material disperso conforme reportado pelo autor. O maior problema encontrado neste procedimento foi a estabilização de uma solução coloidal após a adição do álcool e amônia, pois observamos floculação da solução mesmo antes da adição do silano. Buscando solucionar o problema da floculação da solução de nanopartículas magnéticas em álcool, nos deparamos com uma metodologia proposta por Philipse e colaboradores³ onde um pré-revestimento das partículas com o precursor silicato de sódio muda o ponto isoelétrico e estabiliza a solução coloidal nas condições necessárias para a condensação do TEOS e formação de uma camada de sílica sobre o material magnético nanoparticulado. Este foi então o procedimento empregado para a obtenção de esferas de sílica magnéticas.

Figura 1. Microscopia Eletrônica de Transmissão de esferas de sílica magnéticas.

<u>Partículas tiol-modificadas</u>: a uma suspensão contendo 0,1 g de esferas de sílica magnéticas em 15 mL de tolueno seco foram adicionados 150 μ L de MPTS (3-mercaptopropil)trietoxisilano, sob atmosfera inerte. As partículas foram mantidas sob agitação por 2 horas, recuperadas por centrifugação e secas a 100°C por 20 horas.

<u>Ligação de metais</u>: uma solução contendo íons Pd²⁺ foi tratada com 50 mg do sólido magnético funcionalizado. Após 1 h sob agitação, o material foi isolado magneticamente, seco e analisado por ICP-EAS resultando em 1,21% de paládio no sólido.

Conclusões

As esferas de sílica magnéticas contendo o metal Pd²+ são materiais promissores para uso como catalisadores facilmente recuperáveis do meio por suas propriedades magnéticas. Experimentos para determinar as propriedades catalíticas em reações de hidrogenação de olefinas serão realizados.

Agradecimentos

CNPQ (bolsa PIBIC), FAPESP, TWAS.

¹ Batlle, X.; Labarta, A. J. Phys. D: Apply. Phys. **2002**, 35, R15.

² Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Nanoletters 2002, 2, 183

³Philipse, A. P; van Bruggen, M. P. B.; Pathmamanoharan, C. *Langmuir* **1994**, *10*, 92.