Capacidade antioxidativa de *Conobea scoparioides* Cham. & Schltdl. utilizando o método de seqüestro do radical DPPH.

Monaliza Maia Rebelo¹(PG), Joyce Kelly do R. da Silva²(PG), José Guilherme S. Maia¹(PQ). *gmaia* @*ufpa.br*

Palavras Chave: Conobea scoparioides, atividade antioxidante, timol, metil timol, DPPH

Introdução

Conobea scoparioides (Scrophulariaceae) é uma herbácea de porte ereto, conhecida como "pataqueira", com habitat em áreas úmidas. A planta é utilizada em banhos aromáticos e no tratamento de "beri-beri". Duas amostras da planta foram coletadas. A amostra A na área da Embrapa, cidade de Belém, e a amostra B na cidade de Santa Isabel, PA. Exsicatas da planta foram registradas no herbário do Museu Emílio Goeldi. O material das duas amostras foi seco à temperatura ambiente e submetido à hidrodestilação (3 h), usando-se aparelho Clevenger para obtenção de seus óleos esssenciais. As plantas secas das amostras A e B, foram extraídas em Soxhlet com metanol (3 h), obtendo-se seus extratos após a evaporação do solvente. A composição química (quantitativa e qualitativa) dos óleos foi determinada por CG e CG-EM. Os componentes maioritários dos óleos das amostras A e B foram metil timol (47,7% e 44,7%) e timol (26,4% e 37,0%), respectivamente.

A atividade antioxidativa dos óleos essenciais e dos extratos foi analisada segundo o método de següestro do radical DPPH^{1,2}. Os óleos essenciais foram diluídos 125, 250 e 500 vezes em MeOH. Os extratos na concentração de 4 mg/mL foram diluídos 1,0, 1,75 e 2,5 vezes em MeOH. De cada diluição resultante, 50μL foram misturados com 1950μL de solução de DPPH, a 60μM, para a avaliação da capacidade antioxidativa das amostras. Foram anotadas as absorbâncias iniciais das amostras a 517nm e monitoradas em intervalos contínuos de 10 min até valor constante. As diluições para os óleos na mistura reacional são de 5.000, 10.000 e 20.000 vezes e para os extratos 40, 70 e 100 vezes. Todos os ensaios foram realizados em triplicatas com obtenção da média.

Resultados e Discussão

A capacidade antioxidativa das amostras dos óleos e extratos foi analisada visualmente pela

sua coloração e quantitativamente pelos valores de absorbância obtidos. A reação foi monitorada por 2,5 h até absorbância constante. No final da reação, as amostras que apresentaram intensa coloração amarela e baixa absorbância, foram aquelas de maior capacidade antioxidativa. O efeito de seqüestro dos óleos e extratos de *C. scoparioides*, frente ao DPPH, variou de 50,9 a 80,9% e de 46,7 a 93,9% resp. Os resultados estão expressos nas Tabelas 1 e 2.

Tabela 1. Efeito de seqüestro dos óleos de *C. scoparioide*s frente ao DPPH

Diluição (X)	Óleo Amostra A (%)	Óleo Amostra B (%)
5.000	80,3	80,9
10.000	67,5	69,1
20.000	51,7	50,9

Tabela 2. Efeito de seqüestro dos extratos de *C. scoparioides* frente ao DPPH

Diluição (X)	Extrato Amostra A	Extrato Amostra B (%)
	(%)	
40	93,9	82,1
70	80,7	66,6
100	59,6	46,7

Conclusões

Os óleos e extratos apresentaram significativa atividade antioxidante em baixas concentrações. Observa-se também que o óleo da amostra **A**, por conter maior teor de timol, é mais eficiente no seqüestro de DPPH. O predomínio de timol e seu éter metílico nos óleos de *C. scoparioides*, é comparável àqueles de espécies de *Origanum* e *Thymus*, usados tradicionalmente como condimentos e nutracêuticos da Europa.

Agradecimentos

Os autores agradecem o apoio financeiro do Programa de Biodiversidade (PPBio) do MCT.

¹Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Engenharia Química e de Alimentos, UFPA, 66075-900 Belém, PA.

²Programa de Pós-Graduação em Química, Departamento de Química, UFPA, 66075-900 Belém, PA.

¹ Choi, H-S. et al. J. Agric. & Food Chem. **2000**, 48: 4156-4161. ² Hu,Q., XU, J., Chen, S., Yang, F. J. of Agric. & Food Chem. **2004**, 52: 943-947.

Sociedade Brasileira de Química (SBQ)