Preparação e Caracterização de Nanocompósitos Poliméricos de MWCNT / Kraton-D[®]

Lucas G. Pedroni* (IC)¹, Mauro A. Soto-Oviedo (PQ)¹, J. Maurício Rosolen (PQ)², Ana Flávia Nogueira (PQ)¹.

lucaspedroni@yahoo.com.br

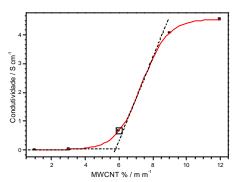
¹Laboratório de Nanotecnologia e Energia Solar, Instituto de Química, UNICAMP, Caixa Postal 6154, CEP 13084-862, Campinas-SP, Brazil.

Palavras Chave: nanocompósitos, MWCNT, elastômeros termoplásticos.

Introducão

O desenvolvimento e estudo de nanocompósitos têm despertado grande interesse cientifico/tecnológico devido às propriedades excepcionais, versatilidade e possibilidade de controle das características exibida por esses sistemas, permitindo que sejam moldadas para atender à aplicação exigida.

Os nanocompósitos obtidos pela inserção de nanotubos de carbono (CNT) em uma matriz polimérica estão entre os materiais de maior potencial tecnológico, pois unem as propriedades e processabilidade dos polímeros com as singulares propriedades dos CNT. Esses materiais podem apresentar melhorias nas propriedades mecânicas, térmicas e elétricas, permitindo sua aplicação como dissipadores de carga estática, blindagem eletromagnética, sensores, materiais ópticos, etc¹⁻³.


Nesse trabalho foram preparados e caracterizados nanocompósitos de nanotubos de carbono de paredes múltiplas (MWCNT) e um copolímero em bloco tribloco de estireno-butadieno-estireno (SBS) comercial, denominado Kraton-D[®], preparados pela técnica de *casting*.

Resultados e Discussão

Os nanocompósitos foram preparados adicionandose a uma solução do copolímero Kraton-D[®] 1102 BT em CHCl₃, uma dispersão dos MWCNT em xileno na presença de 1 % m m⁻¹ de agente dispersante polimérico Polyvell 3900. A dispersão foi obtida submetendo-se a solução a um banho de ultra-som por 2 h à temperatura ambiente. A mistura foi agitada por 48 h. Os filmes foram preparados através da técnica de *casting*. A evaporação do solvente foi realizada em 72 h, sendo os filmes obtidos colocados em um dessecador e submetidos a vácuo. Filmes de compósitos com diferentes quantidades de MWCNT foram confeccionados e os valores de condutividade elétrica dos mesmos foram obtidos pelo método Coleman⁴.

Neste estudo, foi observado um aumento na condutividade elétrica dos nanocompósitos mesmo com baixas concentrações de MWCNT, especificamente,

14 ordens de grandeza (de 10⁻¹⁸ para 10⁻⁴ S cm⁻¹) com a adição de apenas 1% m m⁻¹ de MWCNT, Fig. 1. O limiar de percolação encontrado foi de 5,8% m m⁻¹. Os resultados obtidos podem ser aprimorados através de melhorias na dispersão dos MWCNT na matriz polimérica. Observou-se também que a adição de MWCNT ao Kraton-D[®] resultou em melhorias nas propriedades térmicas dos nanocompósitos, tendo sido registrado um aumento da temperatura de degradação térmica do material em função da concentração de MWCNT presente.

Figura 1. Condutividade elétrica em função da concentração de CNT para os nanocompósitos MWCNT/Kraton-D[®].

Conclusões

Os resultados mostram que os nanocompósitos de MWCNT/Kraton-D[®] apresentam um grande potencial de aplicação como dissipadores de cargas e, possivelmente, como blindagem eletromagnética. A adição de apenas 1% m m⁻¹ de MWCNT aumentou a condutividade para 10⁻⁴ S cm⁻¹.

Agradecimentos

À FAPESP 04/06031-6 e 03/11467-5, à Kraton Polymers do Brasil S/A e ao CNT.Co. Ltd., Korea.

29ª Reunião Anual da Sociedade Brasileira de Química

²Instituto de Química, USP, CEP 14040-901, Ribeirão Preto, SP, Brazil.

¹ Robertson, J. Materials Today 2004, October, 46.

² Terrones, M. Inter. Mater. Rev. 2004, 49, 325.

³ Baughman, R. H; Zakhidov, A. A e de Heer, W. A. Science **2002**, 297, 787.

⁴ Coleman, L. B. Rev. Sci. Istrum. 1975, 46, 1125.