Estudo teórico de complexos com ligação ferro-mercúrio.

Wanderson Romão¹ (IC)^{*}, Renzo C. Silva¹ (IC), Milton K. Morigaki¹ (PQ), Carlos V. P. de Melo¹ (PQ), Marcos T. D. Orlando² (PQ), Armando Biondo² (PQ) e Gilson H. M. Dias³ (PQ).

*wandersonromao@gmail.com

¹Departamento de Química, ²Departamento de Física, Universidade Federal do Espírito Santo, ³Instituto de Química, Universidade Estadual de Campinas.

Palavras Chave: DFT, SCF, Fe-Hg.

Introdução

As reações entre $[Fe(t-BuNC)_3(CO)_2]$ e HgX₂ (X = Cl, Br ou I) produzem adutos com ligação ferro-mercúrio $[Fe(t-BuNC)_3(CO)_2HgX_2]$, que dependem da estequiometria reacional¹.

Duas estruturas isoméricas são atribuídas para estes compostos. Embora ambas tenham uma simetria C_s , o HgX₂ pode está na posição *trans* ao ligante *t*-BuNC ou *trans* ao ligante CO (Figura 1).

A otimização da geometria, o espectro infravermelho, e as interações hiperfinas (ΔE_{q}) foram calculados com o conjunto de bases LANL2DZ em junção com o método B3LYP no estado gasoso pelo pacote de programas Gaussian 2003 (G03W). Os dados obtidos foram também úteis para a comparação de parâmetros energéticos, e a análise dos comprimentos da ligação Fe-Hg.

Medidas experimentais EXAFS tendo como alvo o átomo de mercúrio, obtidas nos Laboratórios LNLS, determinaram principalmente o comprimento da ligação Fe-Hg.

Resultados e Discussão

Uma melhor correlação foi observada para o isômero com o HgX₂ na posição *trans* ao ligante CO (na Figura 1). Este resultado foi fundamentado pelas duas bandas de estiramento v(CO) no espectro na região do infravermelho, por causa dos modos de deformação axial (A') (Figura 2). Por outro lado, se fosse observado uma única banda, a estrutura seria definida com **II**.

Figura 1. Duas geometrias para $[Fe(t-BuNC)_3(CO)_2(HgX_2)]$ na simetria C_s.

A análise dos resultados de EXAFS, Mössbauer e energias SCF, apresentados na Tabela 1, também corroboram para a estrutura I da Figura 1.

Figura 2. Espectro Infravermelho do complexo [Fe(*t*-BuNC)₃(CO)₂(Hgl₂)].

Tabela 1. Dados EXAFS Fe-Hg, desdobramento quadrupolar ((ΔE_Q) e Energia SCF.

$[Fe(t-BuNC)_3(CO)_2HgX_2]$	Fe-Hg ^a	ΔE_Q^{b}	SCF ^c
X = Br (Experimental)	2,32	0,64	
I (Teórico)	2,78	1,02	-734988
II(Teórico)	2,81	1,23	-734986
X = I (Experimental)	2,50	0,64	
I (Teórico)	2,81	1,06	-732753
II (Teórico)	2,84	1,24	-732751

^aAngstron, ^bmms⁻¹ e ^c(kcal/mol).

Conclusões

Dados de cálculos teóricos, correlacionados com dados experimentais, indicaram uma geometria octaédrica para [Fe(*t*-BuNC)₃(CO)₂(HgX₂)] com o ligante HgX₂ *trans* ao CO (Figura I).

Agradecimentos

LCEx, LabPetro (UFES), LNLS e FAPESP

29ª Reunião Anual da Sociedade Brasileira de Química

 $^1\text{M.}$ K. Morigadi, L. C. Machado, C. Larica and G. H. M. Dias, Transition Met. Chem., 24, 5-7 (1999).