Estudo Teórico da Afinidade por Próton de Sistemas Moleculares como Metodologia de Desenvolvimento de Funções de Bases Atômicas.

*Maurício Chagas da Silva1 (PG), Nelson Henrique Morgon2 (PQ).

1-2 IQ/UNICAMP, caixa postal: 6154, CEP: 13083-970 mcsilva@igm.unicamp.br

Palavras Chave: Funções de Base, Coordenada Geradora, ECP.

Introdução

Conjuntos de bases atômicas adaptadas ao ECP-SBKJC^[1] foram obtidos segundo o método da coordenada geradora^[2] e validadas através do estudo teórico da afinidade por próton (AP) em fase gasosa de diversos sistemas moleculares neutros e aniônicos, tais como H,H₂,F⁻,HF,Cl⁻,HCl,Br⁻,HBr,OH⁻,H₂O,SH⁻,H₂S,CH₂F⁻, CH₃F, CH₂Cl⁻, CH₃Cl, CH₂Br⁻, CH₃Br, CH₃O⁻, CH₃OH, CH₃S⁻, CH₃SH,PH₂⁻,PH₃,NH₂⁻,NH₃ entre outros.

Através desse estudo, avaliou-se a metodologia de desenvolvimento dos conjuntos de base adotada bem como a qualidade desses conjuntos frente a diversas metodologias teórica empregadas (QCISD(T),MP2,B3LYP,B3PW91) no cálculo da AP. Esse estudo permitiu estudar a influência da AP como parâmetro de controle no desenvolvimento de conjuntos de base, visando o posterior uso desses conjuntos em cálculos *ab-initio* e de *DFT* de estrutura eletrônica molecular.

Resultados e Discussão

Utilizando-se o MCG^[2] e computacional GAUSSIAN-98, obteve-se conjuntos de bases do tipo (7S5P1D+SBKJC) os quais foram contraídos para [4111/311/1+SBKJC]. A esses conjuntos de base contraídos foram adicionadas funções extras difusas **s** e **p** formando um conjunto denominado \mathbf{B}_0 Ao conjunto \mathbf{B}_0 foram adicionadas mais duas funções, uma de uma f, formando assim o conjunto B₁. As energias eletrônicas foram segundo três diferentes estimadas proposto(I,II e III). O método *I* utiliza uma estimativa da energia QCISD(T)/B₁//MP2/B₀, o método II utiliza a energia B3LYP/B₁//B3LYP/B₀ e o III utiliza a energia $B3PW91/B_1/B3PW91/B_0$ para calcular a AP dos sistemas químicos estudados.

Os desvios obtidos com a metodologia I proposta se encontram na faixa aceitável de ±10kJ/mol, os quais se aproximam dos valores obtidos com o método padrão **G3**^[3] implementado no pacote *GAUSSIAN-98*. Na *Tabela (1)*, podem ser vistos alguns casos estudados, onde se observa uma proximidade dos desvios do método I, utilizando bases *MCG+SBKJC*, e do G3, com exceção à AP do ânion H. Nesse caso o método proposto I com os 29^a Reunião Anual da Sociedade Brasileira de Química

conjuntos de bases desenvolvidas se mostrou mais preciso.

Tabela 1. Desvios absolutos em kJ/mol obtidos para o cálculo da AP de alguns sistemas estudados nos métodos de propostos (I,II,III) e padrões (G3^[3],G3B3^[3])

Espécie	I	II	III	G3	G3B3
Н	4	0	7	26	24
H ₂	2	4	5	8	7
OH.	1	7	8	2	1
H ₂ O	1	3	13	2	12
CH₃ ⁻	1	1	12	4	6
NH ₂	1	2	15	1	1
BH ₂	3	6	11	2	1

Contudo as metodologias de DFT (G3B3,II e III) empregadas apresentaram desvios considerável em alguns casos. Comparando os desvios absolutos da AP obtida com os métodos propostos, tem-se que os conjuntos de base desenvolvidos (B₀ e B₁) se mostraram mais eficientes (precisos) quando métodos *ab-initio* são empregados ou quando o funcional *B3LYP* foi utilizado.

Conclusões

O estudo da AP de alguns sistemas moleculares mostrou-se eficaz na construção de conjuntos de bases atômicas adaptadas a ECP, pois os desvios obtidos no cálculo da AP desses sistemas químicos estão intimamente ligados à qualidade das funções de base. Observou-se que para alguns casos há influência do nível de teoria empregado como nos casos empregando DFT.

Agradecimentos

Silva, M. C. agradece ao fomento da CAPEs e ao IQ/UNICAMP pela infra-estrutura cedida.

¹ Stevens, W.J. e Kraus, H. B., J. Chem. Phys. **1984**, 81, 6026.

² Costa, H. F. M.; Simas, A. M.; Smith, V. H. e Trsic, M. *Chem. Phys. Lett.* **1992**, *192*, 195.

Sociedade Brasileira de Química (SBQ)

³ Pople, J. A.;Head-Gordon, M.;Fox, D. J.; Raghavachari, K. e Curtiss, L. A. *J. Chem. Phys.* **1989**, *90*, 5622.