Alcalóides das cascas do caule subterrâneo de *Duguetia furfuracea* – Annonaceae

Denise Brentan da Silva*¹ (PG), Elayne Cristina de Oliveira Tulli¹ (IC), Rafaela Ferreira Grassi¹ (PG), João Roberto Fabri¹ (TC), João Máximo de Siqueira¹ (PQ), Walmir Silva Garcez² (PQ)

1- Lab. De Farmacognosia, DFB, CCBS, UFMS, e-mail: brentan@nin.ufms.br; 2 - Depto de Química, CCET, UFMS.

Palavras Chave: Duguetia furfuracea, Annonaceae, alcalóides.

Introdução

A família Annonaceae compreende aproximadamente 2300 espécies e 128 gêneros. A espécie *Duguetia furfuracea*, pertencente a esta família, é um arbusto típico do cerrado da região central do Brasil, popularmente é denominada de "araticum-seco" e "araticum- miúdo". É uma planta considerada invasora, quando o cerrado é transformado em pastagens¹; suas sementes são utilizadas como paratisida e as folhas para combater o reumatismo². Recentemente, verificou-se uma significante atividade antimalárica do extrato alcaloídico de suas folhas³.

Neste trabalho, as cascas do caule subterrâneo de *D. furfuracea* foram submetidas á extração com clorofórmio em meio básico (NH₄OH 10%, pH=9), seguida da usual marcha química de alcalóides, para a obtenção do extrato alcaloídico. Este extrato foi cromatografado em coluna de alumina, permitindo a obtenção de 11 grupos de substâncias, dos quais isolaram-se os alcalóides (-)-duguetina, 1, dicentrinona, 2, (-)-duguetina-N-óxido, 3, (-)-N-metiltetraidropalmatina, 4 e (+)-N-metilglaucina, 5. Esses compostos foram identificados por técnicas como IV/FT, EM, RMN ¹H, RMN ¹³C, DEPT 135° e 90°, HMQC, HMBC e NOESY.

Resultados e Discussão

Os compostos 1, 3 e 5 caracterizam-se por apresentar esqueletos aporfínicos (parcialmente aromatizados), enquanto o alcalóide 2 exibe esqueleto oxaporfínico . Para 1 e 3 foram observados sinais característicos dos hidrogênios H_{6a} e H_7 com constante de acoplamento de 12 Hz, corroborando a relação trans entre eles. No espectro de RMN ¹³C de **1** foram observados sinais importantes para sua identificação estrutural, como os metilênicos alifáticos e o carbinólico, mas para 3 observou-se que a quaternização do nitrogênio causou desproteção dos sinais de C5 e C6a e proteção nas posições γ (C_{1b}, C_{3a}, C₇ e C_{7a}). Além disso, visualizou-se para os dois alcalóides, através dos dados de rotação específica, que são levógiros e, portanto, são da série R o que indica que os hidrogênios H_{6a} estão com as configurações indicadas nas estruturas [Figura 1]. No espectro de NOESY de 1 visualizou-se a correlação da metila (N-CH₃) com os hidrogênios H_{6a} e H₇, confirmando a existência de duas conformações, enquanto que no

espectro de **3** aparecera somente a correlação com H₇.

O alcalóide **4** caracteriza-se por apresentar um esqueleto tetrahidroprotoberberínico, sendo observados sinais no espectro de RMN 13 C correspondentes a quatro carbonos metilênicos e, com o espectro de DEPT 90° , confirmou-se que o sinal em δ 50,0 é relativo a metila (N-CH₃), este valor de deslocamento corrobora com junção cis entre os anéis alifáticos, pois em trans o deslocamento dessa metila se encontraria mais protegido.

Figura 1. Estruturas dos alcalóides isolados

Conclusões

Este trabalho contribuiu para a ampliação da caracterização fitoquímica da espécie *Duguetia furfuracea*, pois os alcalóides **1, 2, 3, 4** e **5** ainda não haviam sido isolados nesta espécie.

Agradecimentos

Ao CNPq, FUNDECT/MS e Prof. Dr. Noberto Peporine Lopes (FCFRP/USP) pelos espectros de massas.

¹ Lorenzi, H.; Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, Ed. Plantarum, Nova Odessa, São Paulo, 2000

² Rodrigues, V. E. G.; Carvalho, D. A.; *Ciên. e Agrotec.* **2001**, 25, 102-123.

³ Fischer, D. C. H.; Gualda, N. C. A.; Carvalho, C. S.; Lupo, F. N.; Bonotto, S. V.; Alves, M. O.; Yogi, A.; Santi, S. M.; Avila, P. E.; Kirchgatter, K.; Moreno, P. R. H.; *Ac. Trop.* **2004**, 92, 261-266.