Synthesis of Chalcones and prenylated Flavanone with antioxidant and antiproliferative activity

José Quincoces ¹(PQ)*; Daniela G. Rando¹(PQ); Carolina P. Gonçalves¹ (IC); Reginaldo P. Santos¹ (IC); Marcio A. Goto¹ (IC); Reinaldo Molina², Klaus Peseke², Holger Feist², Dirk Michalik³, Manfred Michalik³, Gerhard Hamilton⁴

1. Grupo de Sìntese Orgânica, Universidade Bandeirante de São Paulo, São Paulo, Brazil; 2. Institut für Chemie, Universität Rostock, Rostock, Germany; 3. Leibniz-Institut für Organische Katalyse, Rostock, Germany; 4. Ludwig Boltzmann Institute of Clinical Oncology, University of Viena, Viena, Austria.

Palavras chaves: synthesis, chalcones, prenylated flavanone, antitumoral, antioxidant

Introduction

Chalcone-based natural products are widely explored because of their array of biological activities ¹⁻². Here, we discuss the antitumoral and antioxidative activities shown by some unexplored chalcones and by a prenylated flavanone.

Results and Discussion

We have prepared a number of chalcones (1-5) by base-catalysed Claisen-Schmidt condensation conditions of appropriate substituted æetophenones and aryl aldehydes. Flavanone (6) was obtained from isomerization of 2'-hydroxychalcones in presence of NaAc and EtOH under reflux of 8 hours.

Chalcones Ar Ar						
	Аг	Ar'				
1	5-hydroxymethylfur-2-yl	4-chlorophen yl				
2	5-hydroxymethyl fur- 2-yl	2-hydroxyphenyl				
3	4-methoxyphenyl	2-hydroxyphenyl				
4	4-hydroxy-3-methoxyphenyl	2-hydroxyphenyl				
5	3-methoxy-4-(3-methyl- 2-butenyloxy) phenyl	2-hydroxyphenyl				
Flavamone 5 → 6						

Figure 1. Synthesized chalcones and flavanone.

Five compounds have been examined for their *in vitro* cytotoxic activity.

The furan derivatives 1 and 2 exhibited cytotoxic activity against all tested tumor cell lines. Compound 1 demonstrated expressive cytotoxic activity and selectivity against breast cancer cell line T47D. At the same concentration, it has not revealed activity against normal fibroblasts.

Compound **2** was also mainly active against T47D but presented lower activity when compared to compound **1**. Interesting, compound **3** exhibited *proliferative* properties.

Following these results, it was prepared a screening test of antiproliferative activity to compounds 1, 2, 4 and 6 using cell counting and MTT methods.

Table 1. Examples IC_{50} values in $\mu g/ml$ of synthesized compounds.

Cell Line	Compounds			
Cell Lille	1	2	4	6
MIAPaCa2*	10	> 200	18	57
CRO2B**	50	> 200	12	6
SW620***	0.85	9.7	17	84
CaCo2***	17.5	> 200	12	18
WI38****	4.9	20	8.3	8.2

*pancreas; ** carcinoid; *** colonic; ****fibroblasts.

Compounds 1, 4 and 7 were very active against almost all tested human tumor cell line. Compound 2 was less active than 1, but more selective. Compounds 4 and 7 demonstrated significant activity against fibroblastic cell lines.

Compounds were also analyzed to their radical scavenging property using DPPH test. Compound 4 exhibited excellent radical scavenging activity (98% of effectiveness).

Conclusions

- All compounds were obtained through efficient and simple synthetic approach and were active against, at least one of the tested tumor cell lines and with IC_{50} values up to 87 μ g/ml.
- Compound 1 exhibited the most promising profile as antitumoral agent.
- Compound **4** also exhibited a significant radical scavenging activity and can be explored as antioxidative agent.

Acknowledgements

Authors are grateful to UNIBAN, FAPESP, DAAD and RIEMSER.

29ª Reunião Anual da Sociedade Brasileira de Química

^{1.}Arty, I.S., Timmerman, H., Samhoedi, M., Sugiyanto, S., van der Goot, H., Europ. J. Med. Chem. **2000**, *35*, 449.

Sociedade Brasileira de Química (SBQ)

²Stoyanov, E. V., Champavier, Y., Simon, A., Basly, J.P. Bioorg. Med. Chem. Lett. **2002**, *12*, 2685.