Síntese e caracterização de complexos do tipo [Pd(ca2en) X_2], sendo ca2en = bis(trans-cinamaldeído)etileno-di-imina e X = Cl, N_3 , SCN

Sara Regina Morais Kollar^{1*} (IC), Carlos Roberto da Silva¹ (PQ), Claudia Torres² (PQ), Luiz Fabrício Zara¹ (PQ), Eduardo Tonon de Almeida¹ (PQ).

1) Universidade Católica de Brasília (UCB), Curso de Química, QS-07, Lote 01, EPCT, Águas Claras, CEP-71966-700, Brasília-DF; 2) UNESP - Instituto de Química, R- Prof.Francisco Degni s/n, Caixa Postal- 355, Araraquara-SP. *sarakollar@gmail.com

Palavras Chave: paládio(II), imina, pseudohaleto, caracterização espectroscópica

Introdução

Medicamentos contendo metais de transição são utilizados, há muitos anos, na profilaxia de muitas moléstias. Em 1965, Rosemberg e colaboradores obtiveram, ao acaso, a cisplatina, o primeiro quimioterápico contendo metal de transição para o tratamento de neoplasias malignas. Sabe-se que o níquel, o paládio e a platina, possuem facilidade em formar complexos quadrado-planos, geometria esta ideal para a modelagem molecular de drogas intercaladoras no DNA¹. Apesar do sucesso alcançado pela cisplatina, no tratamento do câncer, os seus efeitos colaterais trouxeram prejuízos à qualidade de vida dos pacientes. Devido a estes e outros fatores de ordem metabólica, novas drogas estão sendo sintetizadas e investigadas nos últimos anos, principalmente aquelas contendo paládio, um metal menos tóxico ao organismo quando comparado à platina e ao níquel².

Resultados e Discussão

No presente trabalho procurou-se sintetizar novos complexos de coordenação contendo paládio(II), a partir de um ligante imínico derivado de um produto natural, o *trans*-cinamaldeído (óleo de canela), dando continuidade a nossas pesquisas com possíveis candidatos a espécies anti-tumorais³. A imina *trans*-ca2en foi preparada reagindo-se *trans*-cinamaldeído com etilenodiamina em proporções estequiométricas e meio benzênico, Figura 1.

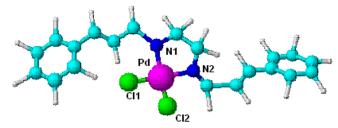
$$C=N$$
 $N=C$

Figura 1. Agente complexante trans-ca2en.

A coordenação foi realizada de acordo com métodos descritos na literatura⁴ e consistiu basicamente na reação entre tetracloropaladado(II) de lítio e a imina *trans*-ca2en, em metanol. Em seguida, a substituição regioespecífica dos cloretos, pelos pseudohaletos azida e tiocianato, foi realizada em meio acetônico. Todos os complexos da série foram caracterizados 29^a Reunião Anual da Sociedade Brasileira de Química

oor ponto de fusão,

técnicas espectroscópicas de UV-Vis, IV e RMN ¹H. Os principais dados obtidos a partir dos espectros vibracionais na região do infravermelho estão sumarizados na Tabela 1.


Tabela 1. Principais dados de IV, pastilha de KBr,

eni cin .				
Complexo	ν(C=N)	δ (C-H) $_{ar}$	$\nu_{as}(X)$	$v_s(X)$
[Pd(<i>trans</i> - ca2en)Cl ₂]	1625	750	ausente	ausente
[Pd(<i>trans</i> - ca2en)N₃]	1618	747	2027	1280
[Pd(trans- ca2en)SCN]	1616	750	2096	1385

as – assimétrico, s – simétrico, ar – aromático, X = Cl, N_3 , SCN.

Conclusões

Em concordância com os dados espectroscópicos apresentados, bem como dos dados de análise

elementar (C,H,N) pode-se propor uma estrutura para o [Pd(*trans*-ca2en)Cl₂], a saber:

Os complexos apresentaram pontos de fusão bem definidos, revelando um alto grau de pureza.

Agradecimentos

Os autores agradecem ao CNPq pela bolsa PIBIC da estudante de Iniciação Científica S.R.M. Kollar, processo 104690/2005-4.

FARRELL, N Transition Metals Complexes as Drugs and Chemotherapeutic Agents. Kluwer Academic Press, Holanda, 1989.

² QUIROGA, A. G.; NAVARRO-RANNINGER, C. Coord. Chem. Rev., v. 248, p. 119, 2004.

³ CAIRES, A. C. F.; DE ALMEIDA, E. T.; MAURO, A. E.; HEMERLY, J. P. E.; VALENTINI, S. R. **Quim. Nova**, v. 22, p.

Sociedade Brasileira de Química (SBQ)

329, 1999; DE ALMEIDA, E. T.; MAURO, A. E.; SANTANA, A. M.; GODOY NETTO, A. V. G.; CARLOS, I. Z. **Quim. Nova**, v. 28, n. 3, p. 405, 2005.

⁴ GANJALI, M.R.; KIANI-ANBOUHI, R.; POURJAVID, M.R.; SALAVATI-NIASARI, M. **Talanta**, v.61, p. 277, 2003.