# TRITERPENÓIDES PENTACÍCLICOS DE *MENTHA VILLOSA*: IDENTIFICAÇÃO ESTRUTURAL E ATRIBUIÇÃO DOS DESLOCAMENTOS QUÍMICOS DOS ÁTOMOS DE HIDROGÊNIO E CARBONO

Francisco J. Queiroz Monte, Eliete F. de Oliveira Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, CP 12200, 60021-970 Fortaleza – CE Raimundo Braz Filho

Setor de Química de Produtos Naturais, LCQUI-CCT, Universidade Estadual do Norte Fluminense, 28015-620 Campos - RJ

Recebido em 5/6/00; aceito em 10/10/00

PENTACYCLIC TRITERPENOIDS OF *MENTHA VILLOSA*: STRUCTURAL IDENTIFICATION AND <sup>1</sup>H AND <sup>13</sup>C RESONANCE ASSIGNMENTS. The structures of seven oleanene and ursene triterpenoids (1-7) isolated from aerial parts of *Mentha villosa* were identified. In addition, the complete <sup>1</sup>H and <sup>13</sup>C resonance assignments of these triterpenoids were accomplished using 1D and 2D NMR spectroscopic experiments.

Keywords: Mentha villosa; Labiatae; pentacyclic triterpenoids; 1D and 2D NMR.

### INTRODUÇÃO

Várias espécies de *Mentha* têm sido investigadas, tanto por suas atividades biológicas<sup>1-6</sup> como também pelos óleos essênciais<sup>5,7-10</sup> produzidos por suas fôlhas. O gênero *Mentha* L., família Labiatae, da subfamília Nepetoidae e da tribo Mentheae, consiste aproximadamente de vinte e cinco espécies. A espécie *Mentha villosa*<sup>11</sup> é uma erva cultivada em todo o Brasil e é usada como remédio popular no tratamento de amebíase, giardíase<sup>3</sup> e shistosomíase<sup>2</sup>.

Este trabalho descreve o isolamento, purificação e identificação estrutural de sete triterpenóides (1-7) das séries oleanano e ursano, isolados do extrato etanólico das partes aéreas de *M. villosa*. A identificação foi estabelecida com base na interpretação de dados espectrais, principalmente RMN <sup>1</sup>H (500 MHz) e <sup>13</sup>C (125 MHz). Experiências 1D e 2D de RMN<sup>1</sup>H, RMN<sup>13</sup>C e NOESY foram também usados para a completa e inequívoca atribuição dos deslocamento químicos dos átomos de hidrogênio e carbono. Estes metabólitos estão sendo descritos pela primeira vez na espécie *M. villosa*.

Várias atividades biológicas para este tipo de compostos foram relatadas<sup>12</sup> nas duas últimas décadas, inclusive algumas delas determinando a relação entre estrutura química e atividade anti-câncer<sup>13-19</sup>. Os dados espectrais corretos podem ser utilizados em posteriores investigações de novos membros desta importante classe de produtos naturais, assim como na compreensão das correlações entre conformação molecular e atividade biológica<sup>20,21</sup>.

## **RESULTADOS E DISCUSSÃO**

O resíduo obtido após concentração da parte solúvel em  $CHCl_3$  do extrato etanólico das partes aéreas de *M. villosa* forneceu após sucessivos fracionamentos cromatográficos em colunas de sílica gel, quatro frações denominadas A, B, D e E. Estas foram identificadas como misturas de ácidos carboxílicos triterpênicos através de espectroscopia de ressonância magnética nuclear de hidrogênio (RMN<sup>1</sup>H) e carbono-13 (RMN<sup>13</sup>C), infravermelho (IV) e espectrometria de massa (EM). As frações A, B e D foram metiladas e acetiladas e os respectivos ésteres metílicos acetilados (A-MeAc, B-MeAc e D-MeAc) submetidos a cromatografia em camada delgada preparativa (CCDP) seguida de cromatografia líquida de alta eficiência (CLAE), permitindo a separação dos triterpenos 1 - 7. Todos os derivados apresentaram-se como sólidos amorfos incolores e tiveram as

fórmulas moleculares determinadas por espectrometria de massa em combinação com os espectros de RMN  $^{1}$ H (500 MHz) e  $^{13}$ C (125 MHz).

Os sinais correspondentes aos átomos de carbono quaternário, metínico, metilênico e metílico (Tabelas 1-6) de todos os triterpenóides isolados (1-7) foram identificados por análise comparativa dos espectros de RMN<sup>13</sup>C-HBBD (Hydrogen Broad Band Decoupled) e RMN<sup>13</sup>C-DEPT (Distortionless Enhancement by Polarization Transfer). A atribuição dos sinais dos átomos de carbono nos espectros de RMN<sup>13</sup>C foi efetuada com base nos espectros bidimensionais [2D: <sup>1</sup>Hx<sup>13</sup>C-HMBC - <sup>n</sup>J<sub>CH</sub> (n=2 e 3), <sup>1</sup>Hx<sup>13</sup>C-HMQC-<sup>1</sup>J<sub>CH</sub>, <sup>1</sup>Hx<sup>1</sup>H-COSY e <sup>1</sup>Hx<sup>1</sup>H-NOESY]. A atribuição dos sinais dos átomos de hidrogênio nos espectros de RMN <sup>14</sup> Por sua vez, foi conseguida pela utilização dos espectros de <sup>1</sup>Hx<sup>1</sup>H-COSY e <sup>1</sup>Hx<sup>13</sup>C - HMQC (Tabelas 1-6).

Nos espectros de RMN <sup>1</sup>H de 1 e 3 obsevou-se os sinais do H-18 como dubleto de dubleto  $[J = 12,0 \ e 3,6 \ Hz (1) \ e J =$ 12,0 e 3,4 Hz (3)] em  $\delta_H$  2,85 e 2,86, enquanto em 2 e 4 apareceram como dubletos  $[J = 12,0 \ Hz (2) \ e J = 10,4 \ Hz (4)]$ centrados em  $\delta_H$  2,22 e 2.24, respectivamente. Estes dados associados aos demais, caracterizaram os triterpenoides 1 e 3 como oleananos e 2 e 4 como ursanos (J = 12,0 e 10,4 \ Hz são correspondentes a interação axial-axial, H-18 $\beta$  axial).

Os triterpenos **1** e **2** revelaram espectros de massa semelhantes, compatíveis com mesma composição elementar (m/z512 [M]<sup>+</sup>, C<sub>35</sub>H<sub>52</sub>O<sub>4</sub>) e exibindo picos intensos em m/z 262 e 203 comumente observados em olean-12-en-28-ato de metila e ursa-12-en-28-ato de metila sem substituintes nos anéis C, D e E, atribuídos a fragmentos formados através de reação do tipo retro Diels-Alder envolvendo o anel C<sup>22,23</sup>.

Um exemplo da estratégia aplicada de modo geral para os triterpenos **1-7** e que permitiu identificar facilmente os átomos de carbono não hidrogenados (exceção do C-17) além de vários carbonos hidrogenados, é ilustrado através do composto **1**, onde estão indicadas as correlações a longa distancia ( ${}^{2}J_{CH}$  e  ${}^{3}J_{CH}$ ) entre os deslocamentos químicos dos hidrogênios metílicos ( $\delta_{H}$ ) e os carbonos ( $\delta_{C}$ ) marcados  $\alpha \in \beta$  em relação a estes hidrogênios (Figura 1). Utilizando-se o mesmo procedimento, os espectros de RMN  ${}^{13}$ C-HBBD,  ${}^{13}$ C-DEPT, HMBC, HMQC, COSY e NOESY forneceram os deslocamentos químicos de **2** - **7** (Tabelas 2 – 6).

Os compostos **3** e **4** revelaram espectros de massa com pico correspondente ao ion molecular em m/z 570 ([M]<sup>+</sup>), em acordo com a mesma fórmula molecular C<sub>35</sub>H<sub>54</sub>O<sub>6</sub> para as duas substâncias e compatível com a presença de um grupo acetoxílico

| <b>Tabela 1.</b> Dados de RMN <sup>-2</sup> C (125 MHz) e <sup>2</sup> H (500 MHz) (CDCl <sub>3</sub> ) de $3\beta$ -O-acetilolean-12-en-28-ato de metila (1)*. | Tabela 1. | Dados de | RMN <sup>13</sup> C ( | 125 MHz) $e^{-1}H$ | (500 MHz) | (CDCl <sub>3</sub> ) de | e 3β-O-acetilolean-12-en-28-ato | de metila (1)*. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------|--------------------|-----------|-------------------------|---------------------------------|-----------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------|--------------------|-----------|-------------------------|---------------------------------|-----------------|

|                 | <sup>1</sup> H | I x <sup>13</sup> C-HMQC ( <sup>1</sup> J <sub>CH</sub> ) | <sup>1</sup> H x <sup>1</sup> H-COSY | <sup>1</sup> H x <sup>1</sup> | <sup>3</sup> C-HMBC |
|-----------------|----------------|-----------------------------------------------------------|--------------------------------------|-------------------------------|---------------------|
| С               | $\delta_{C}$   | $\delta_{\rm H}$                                          |                                      | <sup>2</sup> J <sub>CH</sub>  | $^{3}J_{CH}$        |
| 4               | 37,80          | _                                                         |                                      | 3H-23, 3H-24                  |                     |
| 8               | 39,20          | _                                                         | _                                    | 3H-26                         |                     |
| 10              | 36,80          | _                                                         | _                                    | 3H-25                         |                     |
| 13              | 143,70         | _                                                         | _                                    |                               | 3H-27               |
| 14              | 41,80          | _                                                         |                                      | 3H-27                         | 3H-26               |
| 17              | 46,50          | _                                                         |                                      |                               |                     |
| 20              | 30,70          | —                                                         |                                      |                               | 3H-29, 3H30         |
| 28              | 178,10         | _                                                         | _                                    |                               | <u>Me</u> O-28      |
| AcO-3           | 171,10         | —                                                         | —                                    | <u>Me</u> CO <sub>2</sub> -3  | H-3                 |
| СН              |                |                                                           |                                      |                               |                     |
| 3               | 80,90          | 4,49 (dd, J=10,5 , 5,0 Hz, H-3 $\alpha$ )                 | H-2, H-2'                            |                               | 3H-23, 2H-24        |
| 5               | 55,30          | 0,86 (H-5α)                                               | H-6                                  | :                             | 3H-23, 3H-24, 3H-25 |
| 9               | 47,50          | 1,54 (H-9α)                                               |                                      |                               | 3H-25, 3H-26        |
| 12              | 122,30         | 5,28 (t, J= 4,0 Hz)                                       | 2H-11                                |                               |                     |
| 18              | 41,30          | 2,85 (dd, J=12,0, 3,6Hz, H-18 $\beta$ )                   | H-19, H-19'                          | H-19, H-19'                   |                     |
| CH <sub>2</sub> |                |                                                           |                                      |                               |                     |
| 1               | 38,10          | 1,61 1,06                                                 |                                      |                               | 3H-25               |
| 2               | 23,20          | 1,61 1,04                                                 | H-3                                  |                               |                     |
| 6               | 18,20          | 1,51                                                      |                                      |                               |                     |
|                 |                | 1,37                                                      | H-5                                  |                               |                     |
| 7               | 32,80          | 1,44 1,32                                                 |                                      |                               | 3H-26               |
| 11              | 23,30          | 1,88 (2H-11)                                              | H-9, H-12                            |                               |                     |
| 15              | 27,70          | 1,62                                                      | H-16                                 |                               |                     |
|                 |                | 1,07                                                      | H-16, H-16'                          |                               | 3H-27               |
| 16              | 23,50          | 1,97                                                      | H-15, H-15'                          | H-15, H-15'                   |                     |
|                 |                | 1,61                                                      | H-15                                 |                               |                     |
| 19              | 45,90          | 1,65 1,13                                                 | H-18                                 |                               | 3H-29, 3H-30        |
| 21              | 33,80          | 1,34 1,17                                                 | H-22                                 |                               | 3H-29, 3H-30        |
| 22              | 32,40          | 1,68                                                      | H-21, H-21'                          |                               |                     |
| СН              |                | 1,57                                                      |                                      |                               |                     |
| 23              | 28.10          | 0.86                                                      |                                      |                               | H-3, 2H-24          |
| 23              | 16 70          | 0.85                                                      |                                      |                               | Н-3 3Н-23           |
| 25              | 15,40          | 0.93                                                      |                                      |                               | H-1 H-9             |
| 26              | 16.80          | 0.72                                                      |                                      |                               | н., н. у            |
| 20              | 25.90          | 1.12                                                      |                                      |                               | H-15 H-15'          |
| 29              | 33 10          | 0.92                                                      |                                      |                               | 3H-30               |
| 30              | 23 70          | 0.89                                                      |                                      |                               | 3H-29               |
| AcO-3           | 21,70          | 2.04                                                      |                                      |                               | 511 27              |
| MeO-28          | 51 50          | 3 62                                                      |                                      |                               |                     |

\* A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN <sup>13</sup>C-HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN <sup>1</sup>H . Os espectros 2D <sup>1</sup>Hx<sup>1</sup>H-COSY e <sup>1</sup>Hx<sup>13</sup>C-HMQC também foram usados nestas correlações.

Tabela 2. Dados de RMN<sup>13</sup>C (125 MHz) e <sup>1</sup>H (500 MHz) (CDCl<sub>3</sub>) de 3β-O-acetilursa-12-en-28-ato de metila (2)\*.

|                 | <sup>1</sup> I | H x <sup>13</sup> C-HMQC ( <sup>1</sup> J <sub>CH</sub> ) | <sup>1</sup> H x <sup>1</sup> H-COSY | <sup>1</sup> H x <sup>1</sup> | <sup>3</sup> C-HMBC          |
|-----------------|----------------|-----------------------------------------------------------|--------------------------------------|-------------------------------|------------------------------|
| С               | δ <sub>C</sub> | $\delta_{\mathrm{H}}$                                     |                                      | $^{2}J_{CH}$                  | <sup>3</sup> J <sub>CH</sub> |
| 4               | 37,80          |                                                           | — н                                  | I-3, 3H-23, 3H                | -24                          |
| 8               | 39,50          | _                                                         | _                                    | 3H-26                         | 3H-11,3H-27                  |
| 10              | 36,70          | _                                                         | _                                    | H-9, 3H-25                    | 2H-11                        |
| 13              | 138,30         |                                                           | _                                    | H-12, H-18                    | 2H-11, 3H-27                 |
| 14              | 42,00          |                                                           | _                                    | H-12, 3H-27                   | H-9, H-18, 3H-26             |
| 17              | 48,00          |                                                           |                                      | H-18, H-22                    |                              |
| 28              | 178,00         | _                                                         | _                                    | H-16,                         | H-18, H-22, MeO-28           |
| AcO-3           | 171,00         | —                                                         | —                                    | MeCO <sub>2</sub> -3          | H-3                          |
| СН              |                |                                                           |                                      |                               |                              |
| 3               | 80,90          | 4,49 (dd, J=11, 0, 5,5 Hz, H-3α)                          | H-2, H-2'                            | H-2                           | H-1, 3H-23, 2H-24            |
| 5               | 55,30          | 0,83 (H-5α)                                               | H-6, H-6'                            |                               | Н-1, Н-9, 3Н-23,             |
|                 |                |                                                           |                                      |                               | 3H-24, 3H-25                 |
| 9               | 47,50          | 1,51 (d, J=8,8 Hz , H-9 $\alpha$ )                        | 2H-11                                | 2H-11                         | H-12, 3H-25, 3H-26           |
| 12              | 125,50         | 5,23 (t, J=3,6 Hz)                                        | 2H-11, H-18                          | 2H-11                         | H-18                         |
| 18              | 52,90          | 2,22 (d, J=12,0 Hz , H-18 $\beta$ )                       | H-12, H-16β**, H-                    | 19 H-19                       | H-12, 3H-29                  |
| 19              | 39,10          | 1,32                                                      | H-18, H-20                           | H-18, 3H-29                   | 3H-30                        |
| 20              | 38,90          | 0,98                                                      | H-19                                 | 3H-30                         | H-18, 3H-29                  |
| CH <sub>2</sub> |                |                                                           |                                      |                               |                              |
| 1               | 38,30          | 1.61, 1,08                                                | H-2                                  |                               | 3H-25                        |
| 2               | 23,60          | 1,62, 1,07                                                | H-1, H-3                             | H-1, H-3                      |                              |
| 6               | 18,20          | 1,51, 1,36                                                | H-5                                  | H-5                           |                              |
| 7               | 32,90          | 1,48 (H-7α)                                               |                                      |                               |                              |
|                 |                | 1,32 (H-7β)                                               | 3H-26**                              |                               | 3H-26                        |
| 11              | 23,30          | 1,91 (dd, J= 8,8 , 3,6 Hz)                                | H-9, H-12                            | H-9, H-12                     |                              |
| 15              | 28,00          | 1,76 (dt, J=12,0 , 4,2 Hz), 1,07                          | H-16, H-16'                          |                               | 3H-27                        |
| 16              | 24,20          | 2,00 (dt, J=12,0 , 4,5 Hz, H-16 $\alpha)$                 | H-15, H-15'                          |                               | H-18, H-22                   |
|                 |                | 1,66 (H-16β)                                              | H-15, H-15', H-18 <sup>3</sup>       | **                            |                              |
| 21              | 30,70          | 1,47, 1,28                                                | H-22, H-22'                          | H-22                          | 3H-30                        |
| 22              | 36,70          | 1,66 (H-22α)                                              | H-21, H-21'                          |                               |                              |
|                 |                | 1,58 (dt, J= 12,0 , 4,5 Hz, H-22- $\beta$ )               | H-21, H-21'                          |                               |                              |
| CH <sub>3</sub> |                |                                                           |                                      |                               |                              |
| 23              | 28,10          | 0,85                                                      |                                      |                               | H-3, 3H-24                   |
| 24              | 16,90          | 0,84                                                      |                                      |                               | H-3, H-5, 3H-23              |
| 25              | 15,50          | 0,93                                                      |                                      |                               | H-1, H-5, H-9                |
| 26              | 15,50          | 0,74                                                      | H-7α**                               |                               | H-7, H-9                     |
| 27              | 23,60          | 1,06                                                      |                                      |                               |                              |
| 29              | 17,00          | 0,85 (d, J=6,4 Hz)                                        |                                      | H-19                          | H-18                         |
| 30              | 21,20          | 0,93 (d, J=6,0 Hz)                                        |                                      |                               | H-19                         |
| AcO-3           | 21,30          | 2,04                                                      |                                      |                               |                              |
| MeO-28          | 51,50          | 3,60                                                      |                                      |                               |                              |

 $\overline{}^{*}$  A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN  $^{13}$ C–HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN  $^{1}$ H . Os espectros 2D  $^{1}$ Hx $^{1}$ H–COSY e  $^{1}$ Hx $^{13}$ C-HMQC também foram usados nestas correlações; \*\* Acoplamento a longa distância em W ( $^{4}$ J<sub>HH</sub>).

|                 | <sup>1</sup> I | H x <sup>13</sup> C-HMQC ( <sup>1</sup> J <sub>CH</sub> ) | <sup>1</sup> H x <sup>1</sup> H-COSY | <sup>1</sup> H x <sup>13</sup> C | C-HMBC                     |
|-----------------|----------------|-----------------------------------------------------------|--------------------------------------|----------------------------------|----------------------------|
| С               | $\delta_{C}$   | $\delta_{\rm H}$                                          |                                      | $^{2}J_{CH}$                     | ${}^{3}J_{CH}$             |
| 4               | 38,00          |                                                           |                                      | H-3                              |                            |
| 8               | 39,60          | _                                                         |                                      | 3H-27                            |                            |
| 10              | 38,40          | _                                                         |                                      | H-1, H-1'                        |                            |
| 13              | 143,60         |                                                           |                                      | H-18                             | 3H-27                      |
| 14              | 41,80          | _                                                         |                                      | 3H-27                            | H-12, H-15,<br>H-18, 3H-26 |
| 17              | 47,00          |                                                           |                                      | H-18                             |                            |
| 20              | 30,60          | _                                                         |                                      | H-19                             |                            |
| 28              | 178,00         |                                                           |                                      |                                  | H-18                       |
| AcO-2           | 170,20         |                                                           |                                      | <u>Me</u> CO <sub>2</sub> -2     | H-2                        |
| AcO-3           | 170,50         |                                                           |                                      | <u>Me</u> CO <sub>2</sub> -3     | H-3                        |
| СН              |                |                                                           |                                      |                                  |                            |
| 2               | 68,00          | 5,23 (td, J $\approx$ 10,5 , 4,8 Hz, H-2 $\beta$ )        | H-1, H-1', H-3                       | H-1, H-1', H-3                   | 3                          |
| 3               | 77,00          | 4,96 (d, J $\approx$ 4,8 Hz, H-3 $\beta$ )                | H-2                                  | H-2                              | H-1, H-1',<br>3H-23, 2H-24 |
| 5               | 49,50          | 1,15 (H-5α)                                               | H-6, H-6'                            |                                  | H-1, H-3                   |
| 9               | 47,00          | 1,72 (H-9α)                                               | 2H-11                                |                                  | H-12, 3H-27                |
| 12              | 122,50         | 5,28 (t, J=4,0 Hz)                                        | 2H-11                                |                                  | H-18                       |
| 18              | 40,50          | 2,86 (dd, J=12,0 , 3,4 Hz, H-18 $\beta$ )                 | H-19, H-19'                          |                                  | Н-22.                      |
| CH <sub>2</sub> |                |                                                           |                                      |                                  |                            |
| 1               | 38.20          | 1.62                                                      | H-2                                  |                                  | H-3                        |
|                 | , -            | 1,33                                                      |                                      |                                  |                            |
| 6               | 17,20          | 1,44, 1,34                                                | H-5                                  |                                  |                            |
| 7               | 32,20          | 1,48, 1,28                                                |                                      |                                  | 3H-26                      |
| 11              | 23,00          | 1,90 (2H-11)                                              | H-9                                  | H-9                              |                            |
| 15              | 27,50          | 1,62                                                      | H-16                                 |                                  |                            |
|                 |                | 1.06                                                      | H-16. H-16'                          |                                  | 3H-27                      |
| 16              | 22.60          | 1.95                                                      | H-15, H-15'                          | H-15                             | H-18                       |
|                 | ,              | 1.60                                                      | H-15                                 |                                  |                            |
| 19              | 45.50          | 1.62                                                      | H-18                                 |                                  |                            |
| - /             | ,              | 1.13                                                      |                                      |                                  |                            |
| 21              | 33 30          | 1 33                                                      | н-22 н-22'                           | Н-22                             |                            |
| 21              | 55,50          | 1 18                                                      | 11 22, 11 22                         | 11 22                            |                            |
| 22              | 32.00          | 1 70                                                      | H-21 H-21'                           | H-21                             |                            |
|                 | 52,00          | 1,51                                                      | 11 21, 11 21                         |                                  |                            |
| CH.             |                |                                                           |                                      |                                  |                            |
| 23              | 27.20          | 0 87                                                      |                                      |                                  | Ц 2                        |
| 23              | 21,20          | 0,07                                                      |                                      |                                  | н-э<br>ц 2                 |
| 24<br>25        | 15.90          | 0.20                                                      |                                      |                                  | п-э                        |
| 23              | 15,00          | 1,02                                                      |                                      |                                  | ПО                         |
| 20              | 10,50          | 0,72                                                      |                                      |                                  | п-У                        |
| 27              | 23,80<br>22.00 | 1,1 /                                                     |                                      |                                  | II 10                      |
| 29              | 33,00          | 0,89                                                      |                                      |                                  | п-19                       |
| 30              | 23,00          | 0,92                                                      |                                      |                                  | 3H-29                      |
| ACU-2           | 21,00          | 2,11                                                      |                                      |                                  |                            |
| AcU-3           | 21,00          | 1.95                                                      |                                      |                                  |                            |
| MeO-28          | 51,30          | 3,61                                                      |                                      |                                  |                            |

\* A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN <sup>13</sup>C-HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN <sup>1</sup>H . Os espectros 2D <sup>1</sup>Hx<sup>1</sup>H-COSY e <sup>1</sup>Hx<sup>13</sup>C-HMQC também foram usados nestas correlações.

Tabela 4. Dados de RMN <sup>13</sup>C (125 MHz) e <sup>1</sup>H (500 MHz) (CDCl<sub>3</sub>) de 3β,24-di-O-acetilursa-12-en-28-ato de metila (4)\*.

|                        | <sup>1</sup> H > | x <sup>13</sup> C-HMQC ( <sup>1</sup> J <sub>CH</sub> ) | <sup>1</sup> H x <sup>1</sup> H-COSY | <sup>1</sup> H x <sup>13</sup> C-HMBC |                                        |
|------------------------|------------------|---------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|
| С                      | δ <sub>C</sub>   | $\delta_{\mathrm{H}}$                                   |                                      | $^{2}J_{CH}$                          | <sup>3</sup> J <sub>CH</sub>           |
| 4                      | 41,06            |                                                         |                                      | H-3, 3H-23, 3H-24                     |                                        |
| 8                      | 39,46            | _                                                       |                                      | H-9, 3H-26                            | 3H-27                                  |
| 10                     | 36,80            | _                                                       |                                      | H-9, 3H-25                            |                                        |
| 13                     | 138,17           | _                                                       | _                                    | H-18                                  | 3H-27                                  |
| 14                     | 41,78            | _                                                       | _                                    | 3H-27                                 | H-9, H-12, 3H-26                       |
| 17                     | 48,09            | _                                                       | _                                    | H-18                                  | H-16, H-22, H-22'                      |
| 28                     | 178,70           | —                                                       | _                                    |                                       | H-16, H-18,<br>H-22, MeO-28            |
| AcO-3                  | 171,23           |                                                         | —                                    | <u>Me</u> CO <sub>2</sub> -3          | H-3                                    |
| AcO-24                 | 171,59           |                                                         | —                                    | <u>Me</u> CO <sub>2</sub> -24         | H-24, H-24'                            |
| СН                     |                  |                                                         |                                      |                                       |                                        |
| 3                      | 80,21            | 4,58 (dd, J=10.4, 5,2 Hz, H-3 $\alpha$ )                | H-2, H-2'                            |                                       | 3H-23, H-24, H-24'                     |
| 5                      | 56,01            | 0,97 (Η-5α)                                             | H-6                                  |                                       | H-7, H-9, 3H-23,<br>H-24, H-24', 3H-25 |
| 9                      | 47,65            | 1,54 (H-9α)                                             | 2H-11                                |                                       | H-12, 3H-25, 3H-26                     |
| 12                     | 125,34           | 5,25 (t, J=4,3 Hz)                                      | 2H-11                                | 2H-11                                 | H-18                                   |
| 18                     | 52,90            | 2,24 (d, J=10,4 Hz, H-18β)                              | H-19                                 |                                       | H-12, 3H-29                            |
| 19                     | 39,10            | 1,35                                                    | H-18, H-20                           | 3H-29                                 | 3H-30                                  |
| 20                     | 38,89            | 0,95                                                    | H-19                                 | 3H-30                                 | 3H-29                                  |
|                        |                  |                                                         |                                      |                                       |                                        |
| CH <sub>2</sub>        |                  |                                                         |                                      |                                       |                                        |
| 1                      | 38,51            | 1,71 , 1,10                                             |                                      |                                       | H-9, 3H-25                             |
| 2                      | 23,59            | 1,72 , 1,66                                             | H-3                                  |                                       |                                        |
| 6                      | 19,33            | 1,67                                                    | H-7                                  |                                       |                                        |
|                        |                  | 1,44                                                    | H-5                                  |                                       |                                        |
| 7                      | 33,37            | 1,46                                                    |                                      |                                       | 3H-26                                  |
|                        |                  | 1,33                                                    | H-6, H-6'                            |                                       |                                        |
| 11                     | 23,44            | 1,90 (2H-11)                                            | H-9, H-12                            | H-9, H-12                             |                                        |
| 15                     | 28,03            | 1,75 , 1,07                                             | H-16                                 |                                       | 3H-27                                  |
| 16                     | 24,23            | 2,00 , 1,67                                             | H-15                                 |                                       | H-18, H-22                             |
| 21                     | 30,67            | 1,50                                                    |                                      |                                       |                                        |
|                        |                  | 1,25                                                    | H-22                                 |                                       | 3H-30                                  |
| 22                     | 36,65            | 1,70                                                    |                                      |                                       |                                        |
|                        |                  | 1,53                                                    | H-21                                 |                                       |                                        |
| 24                     | 65,52            | 4,38 (d, J=10.4 Hz, H-24')                              |                                      |                                       |                                        |
|                        |                  | 4,12 (d, J=10.4 Hz, H-24)                               | H-24                                 |                                       | H-3, 3H-23                             |
|                        |                  |                                                         | H-24'                                |                                       | H-3, 3H-23                             |
| CH.                    |                  |                                                         |                                      |                                       |                                        |
| 23                     | 22 59            | 1.01                                                    |                                      |                                       | H_3_3H_2/                              |
| 25                     | 15.40            | 0.95                                                    |                                      |                                       | н-5, 511-24<br>H_0                     |
| 25                     | 16.74            | 0,73                                                    |                                      |                                       | H_Q                                    |
| 20                     | 23 53            | 1.07                                                    |                                      |                                       | 11-9                                   |
| 20                     | 17.04            | 0.86 (d I - 6.8 Hz)                                     |                                      |                                       |                                        |
| 30                     | 21 19            | 0.94 (d I - 6.8 Hz)                                     |                                      |                                       |                                        |
| AcO-3                  | 21,17            | 204                                                     |                                      |                                       |                                        |
| $\Delta c \Omega = 24$ | 21,17            | 2,04                                                    |                                      |                                       |                                        |
| MeO-24                 | 51 /6            | 2,07                                                    |                                      |                                       |                                        |
| 1100-20                | 51,40            | 5,00                                                    |                                      |                                       |                                        |

\* A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN  $^{13}$ C-HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN  $^{1}$ H . Os espectros 2D  $^{1}$ Hx $^{1}$ H-COSY e  $^{1}$ Hx $^{13}$ C-HMQC também foram usados nestas correlações.

|                 | 1]             | H x <sup>13</sup> C-HMQC ( <sup>1</sup> J <sub>CH</sub> ) | <sup>1</sup> H x <sup>1</sup> H-COSY | <sup>1</sup> H x <sup>13</sup> C-H | IMBC                         |
|-----------------|----------------|-----------------------------------------------------------|--------------------------------------|------------------------------------|------------------------------|
| С               | δ <sub>C</sub> | δ <sub>Η</sub>                                            |                                      | $^{2}J_{CH}$                       | <sup>3</sup> J <sub>CH</sub> |
| 4               | 39,40          | _                                                         |                                      | H-3, 3H-23, 3H-24                  |                              |
| 8               | 39,00          |                                                           | _                                    | 3H-26                              | 2H-11, 3H-27                 |
| 10              | 38,10          | _                                                         |                                      | H-1, 3H-25                         |                              |
| 13              | 138,72         | _                                                         |                                      |                                    | 3H-27                        |
| 14              | 44,65          | _                                                         |                                      | 3H-27                              | 3H-26                        |
| 17              | 49,48          | _                                                         |                                      |                                    |                              |
| 18              | 132,78         | _                                                         | _                                    |                                    | 3H-29                        |
| 19              | 136,09         | _                                                         | _                                    | 3H-29                              | 3H-30                        |
| 28              | 177,92         | _                                                         | _                                    |                                    | MeO-28                       |
| AcO-2           | 171,23         | _                                                         | _                                    | <u>Me</u> CO <sub>2</sub> -2       |                              |
| AcO-3           | 171,59         | _                                                         | _                                    | <u>Me</u> CO <sub>2</sub> -3       | H-3                          |
|                 |                |                                                           |                                      |                                    |                              |
| СН              |                |                                                           |                                      |                                    |                              |
| 2               | 70,17          | 5,13 (dt, J=10,5 , 10,5 , 4.3 Hz, H-2)                    | 5) H-3                               | H-3                                | H-1                          |
| 3               | 80,65          | 4,76 (d, J=10,5 Hz, H-3 $\alpha$ )                        | H-2                                  |                                    | H-1, 3H-24                   |
| 5               | 55,10          | 0,99 (Η-5α)                                               | H-6                                  |                                    | H-1                          |
| 9               | 47,77          | 1,48 (H-9α)                                               | 2H-11                                |                                    | 3H-25, 3H-26                 |
| 12              | 125,4          | 5,36                                                      | 2H-11                                |                                    |                              |
| 20              | 34,30          | 2,19                                                      | H-21, H-21',                         | 3H-30                              | 3H-29                        |
|                 |                |                                                           | 3H-30                                |                                    |                              |
| CH <sub>2</sub> |                |                                                           |                                      |                                    |                              |
| 1               | 44,55          | 2,13 , 1,12                                               |                                      |                                    | H-9, 3H-25                   |
| 6               | 18,20          | 1,55 , 1,38                                               | H-5                                  |                                    |                              |
| 7               | 34,39          | 1,55 , 1,45                                               |                                      |                                    | 3H-26                        |
| 11              | 23,30          | 1,93                                                      | H-9, H-12                            |                                    |                              |
| 15              | 28,50          | 1,72                                                      | H-16, H-16'                          |                                    | 3H-27                        |
|                 |                | 1,13                                                      | H-16                                 |                                    |                              |
| 16              | 34,95          | 2,20                                                      | H-15, H-15'                          |                                    |                              |
|                 |                | 1,35                                                      | H-15                                 |                                    |                              |
| 21              | 26,55          | 1,71 , 1,34                                               | H-20                                 |                                    | 3H-30                        |
| 22              | 31,15          | 1,80                                                      |                                      |                                    |                              |
|                 |                | 1,58                                                      |                                      |                                    |                              |
| ~~~             |                |                                                           |                                      |                                    |                              |
| CH <sub>3</sub> |                |                                                           |                                      |                                    |                              |
| 23              | 28,54          | 0,90                                                      |                                      | 3H-24                              | H-3                          |
| 24              | 17,75          | 0,91                                                      |                                      | 3H-23                              | H-3                          |
| 25              | 17,23          | 1,11                                                      |                                      |                                    |                              |
| 26              | 17,82          | 0,86                                                      |                                      |                                    |                              |
| 27              | 21,76          | 0,96                                                      |                                      |                                    |                              |
| 29              | 19,32          | 1,70                                                      |                                      |                                    |                              |
| 30              | 18,69          | 1,05 (d, $J=7,0$ Hz)                                      | H-20                                 |                                    |                              |
| AcO-2           | 21,17          | 1,97                                                      |                                      |                                    |                              |
| AcO-3           | 20,96          | 2,05                                                      |                                      |                                    |                              |
| MeO-28          | 51,67          | 3,60                                                      |                                      |                                    |                              |

Tabela 5. Dados de RMN<sup>13</sup>C (125 MHz) e <sup>1</sup>H (500 MHz) (CDCl<sub>3</sub>) de  $2\alpha$ , 3 $\beta$ -di-O-acetilursa-12, 18-dien-28-ato de metila (5)\*.

\*A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN <sup>13</sup>C-HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN <sup>1</sup>H . Os espectros 2D <sup>1</sup>Hx<sup>1</sup>H-COSY e <sup>1</sup>Hx<sup>13</sup>C-HMQC também foram usados nestas correlações.

**Tabela 6.** Dados de RMN<sup>13</sup>C (125 MHz) e <sup>1</sup>H (500 MHz) (CDCl<sub>3</sub>) de 3 $\beta$ -O-acetil-19 $\alpha$ -hidroxiursa-12-en-28-ato de metila (6)\* e de 2 $\alpha$ , 3 $\alpha$ -di-O-acetilursa-12, 18-dien-28-ato de metila (7)\*.

|                 | 6                                     |                                  | 7               |                                       |                              |  |
|-----------------|---------------------------------------|----------------------------------|-----------------|---------------------------------------|------------------------------|--|
|                 | <sup>1</sup> H x <sup>13</sup> C-HMQC | ( <sup>1</sup> J <sub>CH</sub> ) |                 | <sup>1</sup> H x <sup>13</sup> C-HMBC |                              |  |
| С               | $\delta_{\rm C}$                      | $\delta_{\mathrm{H}}$            |                 | <sup>2</sup> J <sub>CH</sub>          | <sup>3</sup> J <sub>CH</sub> |  |
| 4               | 37,70                                 | _                                | 4               | 38,25                                 | _                            |  |
| 8               | 39,95                                 | _                                | 8               | 39,20                                 |                              |  |
| 10              | 36,90                                 | _                                | 10              | 38,45                                 | _                            |  |
| 13              | 138,15                                | _                                | 13              | 138,50                                | _                            |  |
| 14              | 41,15                                 | _                                | 14              | 44,75                                 | _                            |  |
| 17              | 47,90                                 | _                                | 17              | 49,54                                 | _                            |  |
| 19              | 73,20                                 | _                                | 18              | 132,74                                |                              |  |
| 28              | 178,35                                | _                                | 19              | 135,80                                |                              |  |
| AcO-3           | 171,05                                | _                                | 28              | 176,70                                | _                            |  |
| AcO-2           | 170,18                                | —                                |                 |                                       |                              |  |
| AcO-3           | 170,38                                | —                                |                 |                                       |                              |  |
| СН              |                                       |                                  | СН              |                                       |                              |  |
| 3               | 81,00                                 | 4,48 (H-3a)                      | 2               | 68,30                                 | 2,26 (H-2b)                  |  |
| 5               | 55,25                                 | 0,85 (H-5a)                      | 3               | 77,10                                 | 4,97 (H-3b)                  |  |
| 9               | 47,15                                 | 1,60 (H-9a)                      | 5               | 49,88                                 | 1,09 (H-5a)                  |  |
| 12              | 129.15                                | 5,35                             | 9               | 47,75                                 | 1,56 (H-9a)                  |  |
| 18              | 53,20                                 | 2,59 (H-18b)                     | 12              | 125,25                                | 5,37                         |  |
| 20              | 41,15                                 | 1,40                             | 20              | 34,40                                 | 2,20                         |  |
| CH <sub>2</sub> |                                       |                                  | CH <sub>2</sub> |                                       |                              |  |
| 1               | 38,15                                 | 1,61 , 1,07                      | 1               | 39,58                                 | 1,75 , 1,40                  |  |
| 2               | 23,70                                 | 1,60 , 1,10                      | 6               | 17,95                                 | 1,42 , 1,32                  |  |
| 6               | 18,30                                 | 1,52 , 1,38                      | 7               | 34,40                                 | 1,54 , 1,46                  |  |
| 7               | 32,70                                 | 1,73 , 1,50                      | 11              | 23,30                                 | 1,96 (2H-11)                 |  |
| 11              | 23,55                                 | 1,96 (2H-11)                     | 15              | 28,65                                 | 1,78 , 1,15                  |  |
| 15              | 28,20                                 | 1,60 , 1,00                      | 16              | 35,10                                 | 2,20 , 1,40                  |  |
| 16              | 25,45                                 | 2,50 , 1,58                      | 21              | 26,65                                 | 1,75 , 1,32                  |  |
| 21              | 26,05                                 | 1,68 , 1,25                      | 22              | 31,25                                 | 1,80 , 1,60                  |  |
| 22              | 37,45                                 | 1,72 , 1,55                      |                 |                                       |                              |  |
| CH <sub>3</sub> |                                       |                                  | CH <sub>3</sub> |                                       |                              |  |
| 23              | 28,05                                 | 0,87                             | 23              | 27,93                                 | 0,89                         |  |
| 24              | 16,70                                 | 0,86                             | 24              | 21,85                                 | 0,99                         |  |
| 25              | 15,30                                 | 0,94                             | 25              | 17,10                                 | 1,10                         |  |
| 26              | 16,65                                 | 0,68                             | 26              | 17,95                                 | 0,87                         |  |
| 27              | 24,50                                 | 1,24                             | 27              | 22,10                                 | 1,00                         |  |
| 29              | 27,50                                 | 1,20                             | 29              | 19,45                                 | 1,72                         |  |
| 30              | 16,15                                 | 0,96                             | 30              | 18,85                                 | 1,07                         |  |
| AcO-3           | 21,35                                 | 2,05                             | AcO-2           | 21,15                                 | 2,12                         |  |
| MeO-28          | 51,60                                 | 3,60                             | AcO-3           | 21,23                                 | 1,96                         |  |
| MeO-28          | 51,68                                 | 3,61                             |                 |                                       |                              |  |

\* A multiplicidade dos sinais dos átomos de carbono foi deduzida pela análise comparativa entre os espectros de RMN  ${}^{13}C-$ HBBD e DEPT. Os deslocamentos químicos dos átomos de hidrogênio foram obtidos do espectro 1D de RMN 1H. Os espectros 2D  ${}^{1}Hx^{1}H-COSY$  e  ${}^{1}Hx^{13}C-HMQC$  também foram usados nestas correlações.





 $R_1 = R_3 = OAc, R_2 = H$ **7**  $R_1 = R_2 = OAc, R_3 = H$ 

| <sup>29</sup><br>19<br>20<br>21                                                                                              | Correlações                                          |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $AcO_{4}^{2} \xrightarrow{23}{4} \xrightarrow{23}{10} \xrightarrow{12}{6} \xrightarrow{13}{18} \xrightarrow{18}{22} OCH_{3}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Figura 1. Correlações a longa distancia ( ${}^{2}J_{CH}$  e  ${}^{3}J_{CH}$ ) entre os hidrogênios metílicos e os respectivos carbonos  $\alpha$  e  $\beta$ .

adicional quando comparados com 1 e 2. Os sinais em  $\delta_{\rm H}$  2,11 e 1,95 (3) e d<sub>H</sub> 2,04 e 2,07 (4) observados nos espectros de RMN <sup>1</sup>H foram usados para confirmar esta dedução. No espectro de RMN <sup>13</sup>C de 3, o deslocamento químico do CH-5  $(\delta_C 49,5)$  revelou-se consistente com a configuração 3 $\alpha$ -OAc (efeito  $\gamma$  sobre o CH-5) e, consequentemente, H-3 $\beta$ . Assim, o dubleto (J = 4,8 Hz) em  $d_H$  4,96 corresponde a H-3 em posição equatorial. A localização do segundo grupo acetoxílico em posição α do C-2 foi deduzida com base no espectro 2D NOESY. Picos transversais de correlação do sinal em  $\delta_{\rm H}$  5,23 (td, J = 10,5 e 4,8 Hz) atribuído a H-2 $\beta$  mostrou sua proximidade espacial para com H-3β (δ<sub>H</sub> 4,96), 3H-24 (δ<sub>H</sub> 0,98) e 3H-25  $(\delta_{\rm H} 1,02)$ . O valor de J = 10,5 Hz observado no sinal de H-2 $\beta$  $(\delta_{\rm H} 5,23)$  confirmou interação axial-axial deste hidrogênio com o H-1 do grupo metilênico CH2-1 ocupando também posição axial. Por outro lado, o sinal atribuído a H-3 $\beta$  (( $\delta_H$  4,96) exibiu um efeito Overhauser com 3H-23 ( $\delta_H$  0,87) e 3H-24 (( $\delta_H$  0,98), em acordo com a posição equatorial. Estas observações, confirmaram a presença do sistema  $2\alpha$ ,  $3\alpha$ -di-O-acetil em 3.

No espectro de RMN <sup>1</sup>H de 4, a presença de dois dubletos  $(J = 10,4 \text{ Hz}) \text{ em } \delta_{\text{H}} 4,38 \text{ e } 4,12$ , representando um sistema AB correspondentes a dois hidrogênios geminados mutualmente acoplados, indicou a existência de um grupo acetoximetílico ligado a um carbono quaternário. Este grupo CH<sub>2</sub>OAc foi localizado no C-4 em posição axial com base na ausência de efeito  $\gamma$  no C-5 ( $\delta_{C}$  56,01). Em adição, o hidrogênio H-3 com sinal no espectro de RMN<sup>1</sup>H em  $\delta_{\rm H}$  4,58 (dd, J = 10,4 e 5,2 Hz), geminado com um grupo acetoxílico (AcO-3), foi situado em posição axial (orientação α) com base no valor de J=10,4 Hz (interação axial-axial) e nas correlações espaciais entre os

hidrogênios H-3 $\alpha$  ( $\delta_{\rm H}$  4,58), H-2 $\alpha$  ( $\delta_{\rm H}$  1,66), H-5 $\alpha$  ( $\delta_{\rm H}$  0,97) e 3H-23 ( $\delta_{\rm H}$  1,01) observadas no espectro NOESY.

Assim, com base nestes resultados e nos dados das Tabelas 1 - 4, os derivados triterpênicos 1, 2, 3 e 4 foram identificados como 3β-O-acetilolean-12-en-28-ato de metila, 3β-O-acetilursa-12-en-28-ato de metila, 2a,3a-di-O-acetilolean-12-en-28-ato de metila e 3β,24-di-O-acetilursa-12-en-28-ato de metila, respectivamente. Consequentemente, pode-se caracterizar os triterpenos naturais como ácidos 3β-hidroxiolean-12-en-28-óico, 3βhidroxiursa-12-en-28-óico, 2α,3α-diidroxiolean-12-en-28-óico e 3β,24-diidroxiursa-12-en-28-óico, já que não se obesrvou a presença de sinais correspondentes a grupos acetoxílico e metoxílico nos espectros de RMN<sup>1</sup>H das amostras antes de serem submetidas às reações de acetilação e metilação.

A fórmula molecular C<sub>35</sub>H<sub>52</sub>O<sub>6</sub> de 5, deduzida através do pico em m/z 568 ([M]<sup>+</sup>) observado no espectro de mssa e dados de RMN<sup>1</sup>H e <sup>13</sup>C, revelou uma diferença de dois átomos de hidrogênio quando comparada com a de 3 (C<sub>35</sub>H<sub>54</sub>O<sub>6</sub>). Os espectros de RMN<sup>1</sup>H e <sup>13</sup>C (Tabela 5) permitiram reconhecer a presença do sistema 2a,3β-di-O-acetil, uma ligação dupla adicional tetrasubstituida ( $\delta_C$  132,78 e 136,09), além dos sinais dos carbonos C-13 ( $\delta_C$  138,72) e CH-12 ( $\delta_C$  125,24 e  $\delta_H$  5,36). O tipo ursano foi estabelecido pelo sinal de grupo metílico ligado a carbono sp<sup>2</sup> ( $\delta_H$  1,70, 3H-29), localizando assim, a ligação dupla adicional entre os átomos de carbono 18 e 19, caracterizando-se um sistema diênico conjugado ( $\Delta^{12,18}$ ) na molécula de 5. Em uma publicação<sup>24</sup>, relatando a presença do ácido 2α,3β-dihidroxiursa-12,18-dien-28-óico, o deslocamento químico do C-19 não foi descrito e o do C-21 ( $\delta_C$  31,90) revelou-se inconsistente com o observado para o composto 5 (δ<sub>C</sub> 26,55). O espectro de correlação heteronuclear de hidrogêneio e carbono a longa distância <sup>1</sup>Hx<sup>13</sup>C–COSY-<sup>n</sup>J<sub>CH</sub> (n=2 e 3, HMBC) de **5** permitiu atribuição inequívoca do deslocamento químico do C-19 (δ<sub>C</sub> 136,09) através dos picos transversais correspondentes aos sinais em δ<sub>H</sub> 1,70 (3H-29, <sup>2</sup>J<sub>CH</sub>) e δ<sub>H</sub> 1,05 (3H-30, <sup>3</sup>J<sub>CH</sub>) assim como, do sinal em δ<sub>H</sub> 1,70 (3H-29, <sup>3</sup>J<sub>CH</sub>) com o sinal em δ<sub>C</sub> 132,78 (C-18). Estes dados permitiram , obviamente, localizar o sistema diênico e confirmar a caraterização do triterpeno **5** como do tipo ursano. Por outro lado, a interação heteronuclear spin-spin revelada pela correlação entre os sinais em δ<sub>H</sub> 1,05 (3H-30, <sup>3</sup>J<sub>CH</sub>) e δ<sub>C</sub> 26,55 (CH<sub>2</sub>-21) identificou o sinal deste átomo de carbono metilênico. Assim, o derivado **5** foi identificado como 2α,3β-di-O-acetilursa-12,18-dien-28-ato de metila e, em consequência, o produto natural como 2α,3β-diidroxiursa-12,18-dien-28-óico.

O derivado triterpênico 6, com peso molecular com 16 Daltons a mais quando comparado com 2 e fórmula molecular  $C_{33}H_{52}O_5$  (*m*/*z* 528, [M]<sup>+</sup>), mostrou o espectro de RMN <sup>1</sup>H semelhante ao de 2. Nos espectros de RMN <sup>13</sup>C (HBBD e DEPT) observou-se a ausência do sinal correspondente ao CH-19 ( $\delta_{\rm C}$  39,10) de 2 e a presença de um sinal representando um carbono quaternário oxigenado em  $\delta_{\rm C}$  73,20 (C-19 de 6). Deste modo, o átomo de oxigênio adicional indicado pelo peso molecular foi localizado no C-19 como um grupo hidroxila terciário (Tabela 6). Por tratamento com Ac<sub>2</sub>O na presença de piridina somente o grupo hidroxila do C-3 foi esterificado, formando um derivado monoacetilado, conforme espectro de RMN <sup>1</sup>H ( $\delta_{\rm H}$  2,05). Consequentemente, a estrutura do derivado acetilado 6 foi estabelecida como a do  $3\beta$ -O-acetil-19 $\alpha$ hidroxiursa-12-en-28-ato de metila e a substância natural como ácido 3β,19α-diidroxiursa-12-en-28-óico.

Finalmente, o EM do composto 7 mostrou o pico correspondente ao íon molecular em m/z 568, sugerindo a mesma fórmula molecular  $C_{35}H_{52}O_6$ , de 5. Os espectros de RMN <sup>1</sup>H e <sup>13</sup>C revelaram-se muito semelhantes aos de 5, destacando-se nos espectros de RMN <sup>13</sup>C como diferença mais significativa, os sinais atribuidos ao CH-5 ( $\delta_C$  55,10) em 5 e  $\delta_C$  49,88 em 7. Esta observação indicou a configuração 3 $\alpha$ -Oac como em 3 (Tabela 6). Com base nestes dados e por comparação com 3 e 5, a estrutura de 7 foi estabelecida como sendo o 2 $\alpha$ ,3 $\alpha$ -di-Oac como 2 $\alpha$ ,3 $\alpha$ -diidroxiursa-12-18-dien-28-óico.

Os dados de RMN <sup>13</sup>C dos produtos analisados estão em acordo com valores descritos na literatura<sup>24</sup> para triterpenos semelhantes.

# PARTE EXPERIMENTAL

## Procedimentos experimentais gerais

Os espectros de RMN <sup>1</sup>H e de <sup>13</sup>C foram registrados em um espectrômetro Bruker ARX 500, operando a 500 MHz para hidrogênio e 125 MHz para carbono-13, usando CDCl<sub>3</sub> como solvente. As soluções foram preparadas a partir de 1,5 – 8 mg dos triterpenos em 0,35 ml de CDCl<sub>3</sub> em tubos de 2,5 mm, com TMS como referência interna. Os espectros 2D foram obtidos e processados com um programa Bruker em um computador Aspect X32 com os seguintes parâmetros: temperatura =  $279,0^{\circ}$ K; ns = 16 e 32; TD =  $2048;^{-1}$ Hx<sup>13</sup>C-HMBC-<sup>n</sup>J(C,H) op = 7,0 Hz. A função quadrática de seno e sua troca de funções ( $\pi/4$ ,  $\pi/6$  e  $\pi/8$ ) de apodização foram usadas para o processamento com valores de LB = 0,00 Hz e GB = 0. As condições de obtenção e processamento nas experiências COSY e NOESY foram: intervalo de espera, 1-2 s; 512-1024 experimentos; 1024-2048 t<sub>2</sub> pontos e, largura de varredura de 6 ppm. O tempo de mistura no espectro NOESY foi de 1,2-1,5 s. Para correlações de <sup>1</sup>H x <sup>13</sup>C (canal do <sup>13</sup>C) ) e <sup>13</sup>C x <sup>1</sup>H (canal do <sup>1</sup>H), o mesmo intervalo de espera foi usado, 512-1024 t<sub>2</sub> experimentos, 1024-2048 pontos sendo a largura de varredura de 7

ppm para <sup>1</sup>H e 180 ppm para <sup>13</sup>C. Os espectros de massa foram obtidos em um espectrômetro Finningan TSQ 70, operando a 70 eV; Os espectros no infravermelho foram registrados em um espectrômetro Perkin-Elmer, modelo 1000, em pastilhas de KBr; As separações por CLAE em instrumento Waters 6000A, equipado com detector refratométrico.

#### Material vegetal

*Mentha villosa* foi coletada no Horto de Plantas Medicinais da Universidade Federal do Ceará, Brasil e identificada pelo Dr. Roy Harley da Universidade de Oxford, Inglaterra. Uma exsicata (nº 16545) foi depositado no Herbário Prisco Bezerra do Departamento de Biologia da Universidade Federal do Ceará.

#### Extração e isolamento dos constituintes

A planta, seca em estufa (60 °C) foi triturada e submetida a extração exaustiva com hexano e etanol, sucessivamente, na temperatura ambiente. Após filtração para remover os sais inorgânicos (5,25 g) o extrato etanólico (50 g) foi fracionado entre hexano, CHCl<sub>3</sub>, Et<sub>2</sub>O, EtOAc, n-BuOH e H<sub>2</sub>O. A fase solúvel em CHCl<sub>3</sub> foi evaporada sob pressão reduzida e o correspopndente extrato (9,6 g) foi cromatografado em coluna de sílica gel 60 [0,050-0,20 mm; Carlo Erba (70 g)] eluída com misturas de hexano-CHCl3 contendo quantidades crescentes de CHCl<sub>3</sub>, na seguinte ordem: hexano-CHCl<sub>3</sub>, 9:1 (300 ml), hexano-CHCl<sub>3</sub>, 8:2 (450 ml), hexano-CHCl<sub>3</sub>, 1:1 (800 ml), hexano-CHCl<sub>3</sub>, 4:6 (400 ml) e hexano-CHCl<sub>3</sub>, 2:8 (1200 ml). As frações 33-44 eluídas com hexano-CHCl<sub>3</sub>, 2:8 forneceram um resíduo (1,4 g) que foi recromatografado em coluna de sílica gel 60 [0,050-0,20 mm; Carlo Erba (60 g)] usando CHCl<sub>3</sub> -EtOAc, 9,5:05 (1200 ml), CHCl<sub>3</sub>-EtOAc, 7:3 (800 ml), EtOAc (1400 ml) e EtOAc-MeOH, 2:8 (1100 ml) como eluentes, para originar as frações A (560,0 mg), B (100,5 mg), D (169,5 mg) e E (186,0 mg), respectivamente.

# Obtenção dos ésteres metílicos e dos acetados de A, B e D (A-MeAc, B-MeAc e D-MeAc)

Alíquotas das frações A (40 mg), B (27 mg) e D (54 mg) foram dissolvidas individualmente em uma mistura de éter etílico (9 ml) e metanol (1 ml). Uma solução etérea de diazometano (0  $^{\circ}$ C) recentemente preparada a partir de nitrosometilurea e hidróxido de potássio, foi adicionada às soluções de A, B e D à temperatura de 22 °C até que as soluções adquiriram coloração amarela. Após 24 horas à temperatura ambiente, os solventes das misturas foram evaporados originando sólidos amorfos incolores. Cada produto resultante da reação de metilação foi então acetilado em piridina (1 ml) e anidrido acético (1,5 ml). Após 24 horas à temperatura ambiente, o excesso de Ac<sub>2</sub>O foi decomposto por adição de H<sub>2</sub>O (8 ml) e, a solução foi extraída com CHCl<sub>3</sub> (3 x 5 ml). A fase clorofórmica foi lavada com água, sêca com Na2SO4 anidro e evaporada. Os resíduos foram submetidos à cromatografia em fase preparativa (sílica gel 60, F254, 0.50 mm; Merck) fornecendo os seguintes resultados: A-MeAc (40 mg) exibiu uma banda principal com Rf 0,65 (37 mg), B-MeAc (27 mg) mostrou três bandas com Rf 0,70 (3 mg), Rf 0,40 (4,5 mg) e Rf 0,20 (9 mg) e, D-MeAc (55 mg) duas bandas com  $R_{\rm f}$  0,35 (19 mg) e R<sub>f</sub> 0,25 (17 mg). Todas as bandas foram obtidas por eluição com diclorometano e foram visualizadas através de lâmpada UV (254 nm) após prévia pulverização com solução de rhodamina 6G (Merck) em acetona.

#### Purificação dos produtos

A análise através de cromatografia gasosa (GC) e cromatografia líquida de alta eficiência (CLAE) revelou que a amostra com R<sub>f</sub> 0,65 de A-MeAc, era constituída de três componentes. Uma alíquota (17 mg) foi submetida à cromatografia líquida de alta eficiência (CLAE) [coluna RP 18 Zorbax ODS (25 cm x 9.4 cm i.d., 7 mm); solvente: metanol – água, 8 : 2; fluxo: 5ml/min] em escala semi-preparativa permitindo coletar os dois componentes principais [1 (2,5 mg) e 2 (10,0 mg)]. A análise da amostra com R<sub>f</sub> 0,20 de B-MeAc (9 mg) revelou a existência de três componentes. Através de CLAE utilizando as mesmas condições descritas acima, foi possível separar os três [3 (1,5 mg), 4 (4mg) e 5 (2 mg)]. A análise das amostras com R<sub>f</sub> 0,25 (17,0 mg) e com R<sub>f</sub> 0,35 (19,0 mg) de D-MeAc mostrou também que ambas tratavam-se de misturas. CLAE utilizando as mesmas condições anteriores, possibilitou a separação de 6 (5,5 mg) e 7 (2,5 mg), respectivamente.

# Dados obtidos dos espectros de massa (EIMS) e IV classificados como principais

1: m/z 512 ([M]<sup>+</sup>), 452 (M-CH<sub>3</sub>CO<sub>2</sub>H), 392 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 262, 203;  $v_{max}$ , cm<sup>-1</sup> 1728, 1658, 1464, 1368, 1241; **2**: m/z 512 ([M]<sup>+</sup>), 452 (M-CH<sub>3</sub>CO<sub>2</sub>H), 392 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 262, 203;  $v_{max}$  cm<sup>-1</sup> 1729, 1464, 1369, 1242; **3**: m/z 570 ([M]<sup>+</sup>), 510 (M-CH<sub>3</sub>CO<sub>2</sub>H), 450 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 262, 203;  $v_{max}$  cm<sup>-1</sup> 1731, 1460, 1372, 1244, 1201; **4**: m/z 570 ([M]<sup>+</sup>), 510 (M-CH<sub>3</sub>CO<sub>2</sub>H), 450 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 262, 203;  $v_{max}$  cm<sup>-1</sup> 1731, 1460, 1372, 1244, 1201; **4**: m/z 570 ([M]<sup>+</sup>), 510 (M-CH<sub>3</sub>CO<sub>2</sub>H), 450 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 391, 262, 203;  $v_{max}$  cm<sup>-1</sup> 1741, 1460, 1372, 1247, 1039; **5**: m/z 568 ([M]<sup>+</sup>), 508 (M-CH<sub>3</sub>CO<sub>2</sub>H), 449, 389, 247;  $v_{max}$  cm<sup>-1</sup> 1742, 1460, 1373, 1247, 1039; **6**: m/z 528 ([M]<sup>+</sup>), 510 (M-H<sub>2</sub>O), 468 (M-CH<sub>3</sub>CO<sub>2</sub>H), 453, 260, 190, 179;  $v_{max}$  cm<sup>-1</sup> 3440, 1732, 1460, 1373, 1244, 1201, 1027; **7**: m/z 568 ([M]<sup>+</sup>), 508 (M-CH<sub>3</sub>CO<sub>2</sub>H), 448 (M-2CH<sub>3</sub>CO<sub>2</sub>H), 433, 389, 247;  $v_{max}$  cm<sup>-1</sup> 1731, 1460, 1372, 1244, 1202, 1027.

#### AGRADECIMENTOS

Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil, pelo auxílio financeiro, ao Laboratoire de Géochimie Organique, ULP, Estrasburgo, França, pelas facilidades nas separações cromatográficas e, ao Laboratoire de RMN et de Modelisation Moléculaire, ULP, Estrasburgo, França, pelos espectros de RMN.

## REFERÊNCIAS

1. Souza, A. H.; Rev. Bras. Farm. 1950, 31, 257.

- 2. Dikshita, A.; Husain, A.; Fitoterapia 1984, 55, 171.
- 3. Muniz, M.; Ciência Hoje 1990, 16, 68.
- Matos, F. J. A.; *Farmácias Vivas*, Imprensa Universitária, Universidade Federal do Ceará, Fortaleza, CE, 1991, 108.
   Singh, S. P.; *Fitoterapia* 1992, 63, 76.
- Hiruma, A. C.; Almeida, R. N.; Barbosa, J. M. F.; XII Simpósio de Plantas Medicinais do Brasil, Curitiba, PR, 1992.
- Craveiro, A. A.; Alencar, J. W.; Matos, F. J. A.; Machado, M. I. L.; Monte, F. J. Q.; 13<sup>a</sup>Reunião Anual da Sociedade Brasileira de Química-SBQ, Caxambu, MG, 1990.
- 8. Scannerini, S.; Mucciarelli, M.; *Essent. Oil Res.* **1993**, 5, 651.
- 9. Shimizu, S.; Essent. Oil Res. 1995, 7, 255.
- Velasco-Negueruela, A.; Perez-Alonso, M. J.; Esteban, J.; Garcia Vallejo, M. C.; Zygadlo, J. A.; Guzman, C. A.; Ariza-Espinar, L.; *Essent. Oil Res.* **1996**, *8*, 81.
- 11. Oliveira, E. F.; *Dissertação de Mestrado;* UFC, Fortaleza, CE, 1995.
- 12. Mahato, S. B.; Nandy, A. K.; Roy, G.; *Phytochemistry* **1992**, *7*, 2199.
- Ling, H. C.; King, M. L.; Chen, C. F.; Hsu, K. P.; Su, M. H.; Lin, M. H.; Chem. Abs. 1982, 97, 120120.
- Nishino, H.; Nishino, A.; Takayasu, J.; Hasegawa, T.; Iwasihma, A.; Hirabayashi, K.; Iwata, S.; Shibata, S.; *Cancer Res.* **1988**, *48*, 5210.
- Yamagishi, T.; Zhang, D. C.; Chang, J. J.; McPhail, D. R.; McPhail, A. T.; Lee, K. H.; *Phytochemistry* **1988**, 27, 3213,
- 16. Fujimoto, Y.; Made, S.; Chem. Abs. 1988, 109, 86332.
- Liu, J.; Huang, M.; tao, Y.; Can. J. Chem. 1988, 66, 414.
  Takayasu, J.; Nishino, H.; Hirabayashi, K.; Iwata, S.; Nagata, N.; Shibata, S.; Chem. Abs. 1989, 110, 225092.
- Diallo, B.; Vanhaelen, M.; Vanhaelen-Fastre, R.; Konoshima, T.; Kozuka, M.; Tokuda, H.; *J. Nat. Prod.* 1989, 52, 879.
- Loganathan, D.; Trivedi, G. K.; Chary, K. V. R.; Magn. Reson. Chem. 1990, 28, 925.
- 21. Jimeno, M. J.; Rumbero, A.; Vázquez, P.; Magn. Reson. Chem. 1995, 33, 408.
- 22. Furuya, T.; Orihara, Y.; Hayashi, C.; *Phytochemistry* **1987**, *26*, 715.
- Bhandari, S. P. S.; Garg, H. S.; Agrawal, P. K.; Bhakuni, D. S.; *Phytochemistry* **1990**, *29*, 3956.
- 24. Mahato, S. B.; Kundu, A. P.; *Phytochemistry* **1994**, 37, 1517.