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HÜCKEL AND MÖBIUS ANNULENES: RELATIONSHIPS BETWEEN THEIR HÜCKEL-LEVEL
ORBITALS AND THEIR HÜCKEL-LEVEL ENERGIES
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The problem of convenient access to quantitative Hückel-level descriptions of Möbius and Hückel
annulenes for undergraduate lectures about aromaticity is discussed. Frost circle, Zimmerman
circle, double circle and Langler semicircular mnemonics are described. The relationship between
spectra (complete sets of secular equation roots) for an isoconjugate pair of Hückel and Möbius
annulenes and the corresponding acyclic polyene with one less carbon is fully developed. In addi-
tion to providing an alternative path to exact spectrum roots, this relationship provides immediate
access to almost half of the eigenfunctions for an isoconjugate annulene pair. The remaining
eigenfunctions may be obtained very easily.
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EDUCAÇÃO

INTRODUCTION

In 1931, Hückel described a very simple molecular orbital
approach to the π-electronic structure of planar molecules1.
Since then, many textbooks have been written which introduce
Hückel theory to undergraduate students and apply it, prima-
rily, to planar hydrocarbons (see reference 2 for some repre-
sentative texts). Furthermore, many concerted chemical reac-
tions (e.g. Diels-Alder) can be understood using either the origi-
nal Zimmerman-Dewar method3 or a modification of it4, both
of which rely directly on Hückel theory.

The manual application of Hückel theory to a hydrocarbon
with n carbon atoms requires one to (i) write a set of n homo-
geneous linear equations, (ii) generate an n x n secular deter-
minant, (iii) diagonalize the determinant to generate an nth
order polynomial (the secular equation), (iv) obtain n roots for
the secular equation (the set of n roots is called the “spectrum”
of the compound5), (v) calculate the n molecular orbital ener-
gies (the eigenvalues) using the numbers in the spectrum of
the compound and (vi) obtain n molecular orbitals (eigen-func-
tions) for the molecule by substituting the spectrum roots back
into the homogeneous linear equations.

Because the foregoing approach is very tedious, two alterna-
tives have emerged: (A) exact Hückel-level generalizations have
been developed for particular classes of molecules and (B) com-
puter programs have been written to do this work quickly. We
note that MATLAB6 is a particularly robust and readily available
FORTRAN program for handling determinants.

Amongst hydrocarbons, the annulenes are particularly inter-
esting because of the special properties associated with both
aromatic and antiaromatic molecules. Moreover, aromatic/
antiaromatic annulenes are directly invoked in applying the
previously mentioned methods3,4 for understanding concerted
reactions. Hence, the annulenes are much discussed in under-
graduate lectures and have been selected as the centerpiece for
this article.

Two classes of annulenes have been subjected to examina-
tion at the Hückel level - (i) planar structures with parallel
p-orbitals (Hückel annulenes) and, following Heilbronner7,
Möbius annulenes in which each p-orbital has been rotated by
Θo relative to its contiguous neighbours. Figure 1 shows the
p-orbital arrays for both Huckel and Möbius cyclobutadiene.

Because qualitative discussions about aromaticity for Hückel
and Möbius annulenes focus on ground state multiplicity, some
of the simple circle mnemonics, described below, are normally
included in undergraduate lectures. Therefore, the current report
will explore convenient rapid methods to obtain exact Hückel-
level spectra and eigenfunctions from these mnemonics.

RESULTS AND DISCUSSION

(A) Hückel Spectra and Orbital Energies (Eigenvalues)

(i) The Frost and Zimmerman Circle Mnemonics

In 1953, Frost and Musulin8 pointed out that each contact
point for a regular polygon inscribed in a circle (polygon has a
vertex down) corresponds to the relative energy for a molecular
orbital of the corresponding Hückel annulene. Figure 2 illus-
trates the Frost circle mnemonic for Hückel cyclopropenyl. Since
the eigenvalues for the molecular orbitals are obtained from the
spectrum of the molecule in question, the next problem is to
obtain the spectrum for any Hückel annulene without doing full
Hückel calculations. Salgado Moran showed9 that simple trigo-
nometry will suffice to obtain the spectrum for Hückel annulenes
inscribed in a circle with a two unit radius (a representative
spectrum is provided for Hückel cyclopropenyl in Figure 2).

In 1966, Zimmerman10 revealed the corresponding circle
mnemonic (polygon has a side down) for Möbius annulenes.
Figure 3 illustrates the Zimmerman circle mnemonic for
Möbius cyclopropenyl. Salgado Moran’s approach using simple
trigonometry will provide the spectrum for a Möbius annulene
too (see Figure 4 for an example).

Hückel cyclobutadiene Möbius cyclobutadiene

Figure 1.
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Each polynomial root (r1, r2, r3....ri) in the spectrum of a
Hückel annulene can be converted into the desired eigenvalue
using the expression in equation (1).

Ei
H = α-riβH (1)

Thus, Hückel cyclopropenyl has the eigenvalues: α+2βH,
α-βH and α-βH (see spectrum, Figure 2).

Because the p-orbitals in a Möbius array are not supposed
to be parallel, Heilbronner7 suggested that the spectrum would
give rise to Möbius eigenvalues expressed in terms of a Möbius
beta: βM (see equation (2)).

Ei
M = α-riβM (2)

In order to convert Möbius eigenvalues into a more familiar

form, Heilbronner proposed that riβM should be multiplied by
cosΘ. Θ s defined in equation (3), where k is the number of
vertices in the annulene.

Θ = 180/k (3)

Thus for Möbius cyclopropenyl, Θ = 60o, cosΘ  = 0.5
and the eigenvalues are α+βM (or α+0.5βH), α+βM (or
α+0.5βH) and α-2βM (or α-βH) (see Figure 3 for the spectrum
of Möbius cyclopropenyl).

(ii) Relating Hückel and Möbius Spectra:
A Double Circle Mnemonic

Both Hückel and Möbius p-orbital arrays possess a C2 axis
(there is, for example, a C2 axis through vertices 1 and 3 in
each of the cyclobutadienes shown in Figure 1). For each type
of array, p3 must vanish in some orbitals. For Hückel
cyclobutadiene, p3 vanishes from orbitals which require it to
be symmetric with respect to rotation about the C2 axis through
vertices 1 and 3 (hereafter referred to as “the C2 axis”). For
Möbius cyclobutadiene, p3 vanishes from molecular orbitals
which require it to be antisymmetric with respect to rotation
about the C2 axis. Thus, each structure will have some molecu-
lar orbitals with a maximum of 3 non-zero contiguous coeffi-
cients. These are the eigenfunctions of the allyl group and they
are associated with the allyl spectrum. In general, isoconjugate
Hückel and Möbius annulenes share the spectrum of the acy-
clic polyene which has one less carbon.

Since Hückel annulenes have a zero coefficient for one cen-
ter in each of their symmetric (rotation about C2) orbitals, the
spectrum of a Hückel annulene has those roots associated with
the symmetric molecular orbitals of the acyclic polyene with
one less carbon (i.e. ψ2, ψ4, ψ6,....ψ2n+2). Since Möbius
annulenes have a zero coefficient for one center in each of
their antisymmetric (rotation about C2) orbitals, the spectrum
of a Möbius annulene has those roots associated with the anti-
symmetric molecular orbitals of the acyclic polyene with one
less carbon (i.e. ψ1, ψ3, ψ5....ψ2n+1). Figure 5 presents these
relationships for the cyclobutadienes and the cyclopentadienyls.

Figure 2. Frost circle mnemonic for Hückel cyclopropenyl. The
polygon is inscribed in a circle with the vertex down. Each point at
which a polygon vertex touches the circle circumference corresponds
to the relative energy of a Hückel cyclopropenyl molecular orbital.

Figure 3. Zimmerman circle mnemonic for Möbius cyclopropenyl. The
polygon is inscribed in a circle with a side down. Each point at which
a polygon vertex touches the circle circumference corresponds to the
relative energy of a Möbius cyclopropenyl molecular orbital.

Figure 4. Simple trigonometry in conjunction with the Zimmerman
circle mnemonic for Möbius cyclopropenyl.

Figure 5. Deducing partial spectra for Hückel and Möbius annulenes
given the spectrum of the acyclic polyene with one less carbon.

Given the Zimmerman and Frost circle mnemonics, along
with the spectrum of the appropriate acyclic polyene, all secu-
lar equation roots are immediately known for any isoconjugate
pair of Hückel and Möbius annulenes except those at ±2. All
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even Hückel annulenes have roots at ±2, while no even Möbius
annulenes have such roots. All odd Hückel annulenes have a
single root at -2, while all odd Möbius annulenes have a single
root at +2. Consequently, the roots in the spectrum of the
appropriate acyclic polyene will occur in degenerate pairs,
along with roots at ±2, in the sum of the spectra for any
isoconjugate pair of Hückel and Möbius annulenes, regardless
of the number of vertices in the annulene.

Each even Hückel annulene possesses a rotational axis which
passes through diametrically opposed vertices. All molecular or-
bitals which are symmetric with respect to rotation about such an
axis must have zero coefficients for the p-orbitals associated with
the pair of centers the axis passes through. As a result, each C2n+2
Hückel annulene (C6 or larger) has a subset of molecular orbitals
which can be represented as simple linear combinations of the
molecular orbitals for the corresponding Cn acyclic polyene (e.g.
cyclooctatetraene has three symmetric molecular orbitals, each of
which can be represented as a linear combination of a degenerate
pair of allyl molecular orbitals). These orbitals are associated with
spectrum roots that are identical to those for the Cn polyene.

From the Frost circle mnemonic, these roots will occur as
degenerate pairs in the spectrum of the Hückel annulene. From
the previous discussion, the Hückel annulene will also have spec-
trum roots at ±2. Moreover, all of these roots will be present in
the combined spectra of the Cn+1 Hückel and Möbius annulenes.

It is now obvious that one can inscribe both a Cn+1 polygon
(vertex down) and a Cn+1 polygon (side down) in the same
circle and know that each contact point corresponds to the rela-
tive energy of a molecular orbital for the Hückel C2n+2

annulene. Figure 6 illustrates this “double circle mnemonic”
for Hückel cyclooctatetraene. The double circle mnemonic il-
lustrated in Figure 6 has been proposed earlier11 with only a
very modest discussion of its origin.

(B) Molecular Orbitals (Eigenfunctions)

As outlined in the introduction, one begins to apply Hückel
theory to a hydrocarbon by writing the appropriate homoge-
neous linear equations. After making the customary zeroth or-
der Hückel assumptions, the homogeneous linear equations for
Hückel cyclobutadiene are:

a1r + a2 + 0 + a4 = 0 (4)

a1 + a2r + a3 + 0 = 0 (5)

0 + a2 + a3r + a4 = 0 (6)

a1 + 0 +a3 + a4r = 0 (7)

From Figure 5, Hückel cyclobutadiene has a symmetric
molecular orbital for which r = 0. Its eigenfunction is identical
to ψ2 for the allyl group (see Figure 8). Because it has another
molecular orbital for which r = 0 (Frost circle mnemonic), that
orbital must be antisymmetric. Therefore a1 = a3 and, from
equation (5), a1 = a3 = 0. So, from equation (6), a2 = -a4.
Normalization leads to ψA (see Figure 8). Clearly, degenerate
pairs of orbitals can be rapidly obtained for Hückel annulenes.
For all Hückel annulenes, the absolute value of the coefficients
in the orbitals for which r = ±2 can be obtained from equation
(8), where k is the number of vertices in the annulene.

a = k-0.5 (8)

Figure 6. Obtaining the spectrum of Hückel cyclooctatetraene by
inscribing Möbius and Hückel cyclobutadienes in a single circle.

(iii) Beyond the Annulenes: A Semicircular Mnemonic for
Contiguous, Symmetric, Non-fused Bicycles

The Frost circle mnemonic (see section (A)(i) and Figure 2)
provides a simple and convenient classroom approach to the
generalization that Hückel annulenes are aromatic if they pos-
sess 4n+2 π electrons and antiaromatic if they possess 4n π
electrons. A recently reported semicircular mnemonic12 provides
rapid access to the relative energies of the molecular orbitals for
Hückel contiguous, symmetrical, non-fused bicycles. Beginning
with the application of the Frost circle mnemonic to the
monocycle, one can extrapolate to obtain the relative energies
for the orbitals of the Hückel bicycle. Figure 7 illustrates the
application of this mnemonic device to biscyclobutadiene.

What emerged from the systematic exploitation of this mne-
monic for symmetric, contiguous, non-fused bicycles is that (at
the Hückel level) they are aromatic if they possess 8n+2 π
electrons and antiaromatic if they possess 8n π electrons. The
foregoing generalization serves to establish that the widespread
practice of applying Hückel’s rule to polycycles is unsound.

Figure 7. The Langler semicircular mnemonic applied to biscyclobutadiene.

For Hückel annulenes, r = -2 orbitals have the form p1k-0.5 +
p2k-0.5 +.....+ pnk-0.5, whereas r = 2 orbitals have the form p1k-0.5

- p2k-0.5 + p3k-0.5 - p4k-0.5...... Hence, Hückel cyclobutadiene has
an orbital 0.5p1 + 0.5p2 + 0.5p3 + 0.5p4 for which r = -2 and an
orbital 0.5p1 - 0.5p2 + 0.5p3 -0.5p4 for which r = 2.

Comparable simplicity attends symmetry-simplified calcu-
lations on Möbius annulenes with only one proviso: each basis
set has a single pair of adjacent orbitals which are inverted

r = 0; ψ2: 0.707p1 - 0.707p3r = 0; ψS: 0.707p1 - 0.707p3
r = 0; ψA: 0.707p2 - 0.707p4

Figure 8. Rapid access to degenerate eigenfunctions for Huckel
cyclobutadiene.
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(see p2, p3 at the top of Figure 9) - for this pair of orbitals an
antibonding interaction requires their coefficients to have the
same signs and a bonding interaction requires their coefficients
to have opposite signs.

r = -1.414; ψA: 0.5p1 + 0.707p2 - 0.5p3

r =  1.414; ψA: 0.5p1 - 0.707p2 - 0.5p3

r = -1.414; ψs: 0.5p2 + 0.707p3 + 0.5p4

r =  1.414; ψs: 0.5p2 - 0.707p3 + 0.5p4

r = -1.414; ψ1 = 0.5p1 + 0.707p2 + 0.5p3

r =  1.414; ψ3 = 0.5p1 - 0.707p2 +0.5p3

Figure 9. Simple access to degenerate eigenfunctions for Möbius
cyclobutadiene.

Otherwise, half the molecular orbitals for Möbius annulenes
are taken directly from those of the acyclic polyene with one
carbon less. The homogeneous linear equations for Möbius
cyclobutadiene are given below:

a1r + a2 + 0 - a4 = 0 (9)

a1 + a2r + a3 + 0 = 0 (10)

0 + a2 + a3r + a4 = 0 (11)

-a1 + 0 + a3 + a4r = 0 (12)

Figure 9 shows the molecular orbitals for Möbius cyclo-
butadiene (see also Figure 5 for those roots which are common to
the spectra of Möbius cyclobutadiene and the allyl group).

CONCLUSIONS

Hückel-level classroom lectures about aromaticity of Hückel
and Möbius annulenes can be put on a quantitative basis without

the need for lengthy computations. Hückel spectra may be
obtained simply with the aid of the Frost or Zimmerman circle
mnemonics and rudimentary trigonometry. Alternatively, the
double circle mnemonic may be employed for most even Hückel
annulene spectra in conjunction with rudimentary trigonometry.

Eigenfunctions and spectra for any acyclic polyene can be
conveniently obtained with the Free Electron Method12. There-
after, both spectra for an isoconjugate pair of Hückel and
Möbius annulenes (with one more carbon) are immediately
known except roots at ±2. A simple generalization allows one
to know when there are annulene roots at ±2.

About half of the molecular orbitals for a Hückel or
Möbius annulene are immediately available from those of the
corresponding acyclic polyene with one less carbon. Remaining
eigenfunctions are readily obtained by symmetry-simplified
calculations using the appropriate homogemeous linear
equations and the known secular equation roots. Results from
the Langler semicircular mnemonic serve to caution against
attempting to apply these methods or generalizations derived
from them to non-annulenes.
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