Ring expansions promoted by iodine(III): Synthesis of heterocycles

Ajmir Khan (PG), Luiz F. Silva Jr (PQ)

ajmirkhan33@yahoo.com, luizfsjr@iq.usp.br

Instituto de Química, Universidade de São Paulo, CP 26077, CEP 5513-970, São Paulo SP, Brazil. Key words: Ring expansion, hypervalent iodine, heterocycles, Seven-membered ring.

Abstract

A metal-free approach for the synthesis of heterocycles bearing seven membered rings is described by using hypervalent iodine(III) reagent.

Introduction

The ring expansion of methylene derivatives mediated by PhI(OH)OTs (HTIB or Koser's Reagent) has been investigated by Justik and Koser for the synthesis six-, seven-, and eight-membered ring carbocyclic compounds. The eight substrates used in this previous work bear a non-substituted benzene ring as migrating group. This protocol was subsequently applied in the total synthesis of both isomers of *ar*-himachalene. Herein, we describe the ring expansion of heterocyclic benzo-methylenes mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Fig. 6

Results and Discussion

Different methylenes derivatives were prepared for ring expansions reaction from corresponding ketones (Scheme 1).

Scheme 1. Preparation of substrates 3a-d.

To study the oxidative rearrangement reaction with HTIB we apply the same protocol mentioned in literature.⁵ The reaction of pyrrole **3a** led to **4a** in 36% yield (Table1, entry 1). Seven-membered ring of thiophene **4b** was obtained in yield of 95% (entry 2). Similarly furan **4c** gave **4d** in 55% yield with an additional ring opening product **5c** in 42% yield (entry 3). The reaction of indole **3d** affording the desired ring expansion **4d** in 59% yield (entry 4).

Table 1. Ring expansions using HTIB.

Entry	Substrate	Conditions	Product
.1.	Boc 3a	3 equiv HTIB, MeOH 95%, rt, 3 h	Boc 4a 36%
2	S 3b	1.2 equiv HTIB, MeOH 95%, rt, 30 min	4b 95%
3,	€ 3c	1.2 equiv HTIB, MeOH 95%, rt, 30 min	+ MeO OMe
4.	N 3d	1.2 equiv HTIB, MeOH 95%, rt, 15 min	4c 55% 5c 42%

Mechanism for the ring expansion induced by HTIB is presented in **Scheme 2**. 2 The electrophilic attack of iodine(III) on the double bond forms carbocation which is attacked by water. The migration of aryl bond and elimination of H_2O and PhI molecules gives the ring expansion product.

Scheme 2. Mechanism of the ring expansion.

Conclusion

A metal-free approach for the synthesis of sevenmembered rings through an iodine(III)-mediated ring expansion reaction is described. The substrates can be easily obtained from readily available starting materials.

Acknowledgements

FAPESP, CAPES and CNPq for financial support. Douglas Lopes for preparation of **1d**.

- 1) Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159.
- (2) Justik, M. W.; Koser, G. F. Molecules 2005, 10, 217.
- (3) Chavan, S. P.; Khatod, H. S. Tetrahedron-Asymmetry 2012, 23, 1410.
- (4) Silva, L. F., Jr.; Olofsson, B. *Nat Prod Rep* **2011**, 28, 1722.
- (5) Silva, S. B. L.; Della Torre, A.; Carvalho, J. E.; Ruiz, A. L. T. G.; Silva, L. F., Jr. Molecules 2015, 20, 1475.
- (6) 36^a RASBQ, ORG065, Silva, S. B. L.; Silva Jr., L.F. (*IQUSP*).