A integrated route for CO₂ capture in the steel industry and its conversion into CaCO₃

<u>Plínio César C. Pinto</u> (PQ)¹, Tamíris R. da Silva (IC)¹, Fabiano M. Linhares (IC)¹, Fabrício V. de Andrade (PQ)¹, Mariana M. O. Carvalho (PG)², Geraldo M. de Lima (PQ)^{1*}

* gmlima@ufmg.br

¹ Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil

² Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil

Keywords: steel slag, Solvay process, mineral carbonation, CO2 capture

Abstract

This work proposes the transformation of CO_2 into calcium carbonate utilizing steel slag and waste heat generated in the steel industry. Laboratory scale experiments showed that near 95 wt. % of NaCl and NH₃ necessary to the mineral carbonation can be regenerated, therefore minimizing costs.

Introduction

The steel production is one of the major CO_2 emitting industrial processes. The main carbon dioxide source is the blast furnace, whose exhaust gases contain between 14 and 33 % of CO_2 . This work proposes a new approach to capture and transform CO_2 into carbonates using some steps of the Solvay process, in which ammoniated brine reacts with CO_2 producing mainly solid NaHCO₃ and aqueous NH₄Cl. In a second step, the latter reagent is used to leach Ca^{2+} from steel slag and the former reacts with the leachate, producing high purity CaCO₃ and, at the same time, enabling reactants reclamation (Figure 1).

Results and Discussion

Table 1: Matrix of Composite Central Design (CCD) of capture of CO_2 by ammoniated brines.

Tests	Factors		Response	
	NH ₃	NaCl	NaHCO ₃	Time to
	(wt. %)	(wt. %)	mass (g)	capture
				50% of
				CO ₂ (min)
1	5	5	0	7.9
2	5	20	4.57	6.3
3	15	5	NH ₄ HCO ₃	54.3
4	15	20	6.13	35.7
5	10	1.93	NH ₄ HCO ₃	31.4
6	10	23.08	7.17	23.0
7	2.95	12.5	0.92	5.4
8	17.05	12.5	NH ₄ HCO ₃	60.8
9	10	12.5	2.91	17.4
10	10	12.5	3.01	23.4
11	10	12.5	2.87	16.7
Solvay	8	26	8.85	6.3
Extra 1	10	24	7.10	11.4
Extra 2	5	27	6.28	4.4

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

We concluded the best ammoniated brine concentration, which maximizes NH₄Cl and NaHCO₃ formation, is that of the Solvay process, 26 wt. % NaCl and 8 wt. % NH₃. We have observed, in the absence of HCO₃⁻, the mother liquor that is rich in NH₄Cl was able to extract 22 wt. % of the Ca²⁺ cations present in the steel slag and 2 wt. % of the initial NH₃ was recovered. In the best case, more than 89 wt. % of the Ca²⁺ present in the solution was transformed into CaCO₃. It was achieved with a NaHCO₃/Ca²⁺ molar ratio of 2:1, during 20 min at ambient temperature or 10 min at 60 °C.

Figure 1. CO₂ capture cycle flowchart, including lixiviation, carbonation and reagents regeneration.

Conclusions

In the present work, we have proposed a new route for CO_2 capture and mineralization by a modified Solvay process. Most of the starting materials are regenerated and several leaching and CaCO₃ precipitation cycles are possible.

Acknowledgments

This work was supported by CNPq, CAPES and FAPEMIG - Brazil.