Phosphates Glasses via coacervation route containing cadmium ferrite magnetic nanoparticles.

<u>Juliane R. Orives^{1*}</u> (PG), Douglas F. Franco² (PQ), Wesley R. Viali¹ (PQ), Marcelo Nalin¹ (PQ). *juliane_resges@hotmail.com

1 LAVIE- Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brasil. 2 Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brasil.

Keywords: Coacervate, Magnetic nanoparticles, core@shell.

Introduction

Coacervation is a processs that makes possible to incorporate inorganic compounds, such as nanoparticles and also rare earths in the polyphosphate structure at room temperature. Thus such material can be transformed into a glass using the melting-quenching process of such precursor.¹ The research field using glass and glass ceramics matrices containing magnetic nanoparticles is called spin-photonics, where photons can be used to standardize magnetic medium and to study the fundamental properties of the interaction of light with magnetic materials.^{2,3} This study aimed to prepare and characterize a phosphate based glass containing magnetic nanoparticles of cadmium ferrite via coacervation route followed by meltingquenching. The materials obtained were studied by thermal analysis, Raman Spectroscopy, UV-Vis spectrospy and transmission electron microscopy.

Results and Discussion

Cadmium ferrite was prepared by the coprecipitation method.⁴ The nanoparticles were coated with an insulating layer, forming the structure of the core@shell type. The coacervate (NaPO₃-CaCl₂) was obtained from the interaction between the sodium polyphosphate solution (NaPO₃)_n (4.0 M) with a calcium chloride solution CaCl₂.2H₂O (2.0 M). Three samples were prepared, one without nanoparticles, and two other containing 4% and 8 % in mass of CdFe₂O₄@SiO₂. The glass obtained from the coacervates was produced by melting the mixture at 1000 °C and subsequent quenching at room temperature. The coacevates showed efficient dispersion of the nanoparticles. Figure 1 shows the Raman spectrum of the coacervate that presents two main vibrational modes assigned to the $v_s(P-O-$ P) and $\upsilon_s(P-O_t)$ in 691 and 1173 cm⁻¹. For the coacervate glass - 4% CdFe₂O₄@SiO₂ the v_s (P-O-P) and $\upsilon_s(P-O_t)$ appear in 694 and 1171 cm⁻¹, respectively, while for the coacervate glass - 8% CdFe₂O₄@SiO₂ in 702 and 1164 cm⁻¹, respectively. increasing Besides, the concentration of $CdFe_2O_4@SiO_2$ into the coacervate leads to decreasing of the relative intensity of the two vibrational modes analyzed and a higher bandwidth, mainly for the $u_s(P-O_t)$ mode in 1164 cm⁻¹ in the coacervate - 8% CdFe₂O₄@SiO₂ glass.

Figure 1. Raman Spectra for glasses whit and without magnetic nanoparticles.

Transmission electron microscopy (TEM) revealed in the Figure 2-a the presence of nanoparticles dispersed through the glass, in 2-b can observe the crystal planes of the CdFe₂O₄ proving that there was nanoparticles in the glass. The interplanar spacing calculated from FFT (Fast Fourie trasnformer) to d₃₁₁ is 0,26 nm the value found in the literature is 0,259 nm.

Figure 2. Transmission electron microscopy of glass containing 4% of CdFe₂O₄@SiO₂.

Conclusions

The NaPO₃-CaCl₂ glassy matrix obtained via coacervation proved to be an efficient host for dispersion of the magnetic nanoparticles CdFe₂O₄@SiO₂, according to the Raman spectroscopy and TEM data.

Acknowledgments

The authors are thankful grant 2013/07793-6, São Paulo Research Foundation and CNPQ.

¹ Dias. F, et al. Langmuir. **2005**,1776.

² Sugimoto. N. J. Non-Cryst. Sol. 2008, 354.

³ Boeglin. C, et al. *Nature*. **2010**, 465.

⁴ Park. J.; Cheon. J. J. Am. Chem. Soc. 2016.