Decomposition of S-nitrosothiols and colorimetric analysis on microfluidic paper-based analytical devices

Marilly de O. Araújo1 (IC), Abdulghani Ismail2 (PG), Cyro L. S. Chagas1 (PG), Sophie Griveau2 (PO), Fanny d’Orlyé2 (PO), Ânne Varenne2 (PO), Fethi Bedioui2 (PO) and Wendell K. T. Coltro1* (PO)

1Grupo de Métodos Eletroforéticos, Instituto de Química, Universidade Federal de Goiás, Goiânia/GO, Brasil
2Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, 75005 Paris, France.
*Email: wendell@ufg.br

Palavras chave: Paper microfluidics, Griess reaction, Nitric oxide, point-of-care testing.

Abstract

A disposable microfluidic paper based analytical was developed to colorimetrically analyse different S-nitrosothiols.

Introduction

S-nitrosothiols (RSNOs) are very important biomolecules due to their capability to store nitric oxide (NO). In addition, they are responsible for many physiological (vasodilatation, antiplatelet aggregation, antimicrobial and signaling...) and physio-pathological functions (neurodegenerative diseases such as Parkinson and Alzheimer, apoptosis, chronic obstructive pulmonary disease, preeclampsia, diabetes)1. Microfluidic paper-based analytical devices (µPADs) coupled with colorimetric detection has become very popular for analysis of compounds with clinical importance including reactive nitrogen species2. In this scenario, we describe for the first time the use of µPAD combined with colorimetric detection to analyse the decomposition of RSNOs promoted by different light sources (LEDs) like ultraviolet (UV), visible (Vis) and infrared (IR) radiation.

Results and Discussion

Additional information about the fabrication of µPADs through wax printing technology and the procedure for colorimetric measurements using a scanner are described elsewhere2,3. LEDs were positioned at fixed distance from µPAD using a 3D printed polymeric device (Figure 1). Decomposition of S-nitrosoglutathione (GSNO), S-nitrosocysteine (CySNO) and S-nitrosalbumine (AlbSNO) was performed using mercury ion as well as UV and Vis lights at physiological pH.

Figure 2. Calibration curves for a) GSNO and b) CySNO.

Conclusions

We have presented the first methodology to detect RSNOs on µPADs. Decomposition of low molecular weight and high molecular weight RSNOs was made on the paper using mercuric and various light decomposition processes. Mercuric decomposition was total for the three RSNOs used. This is a simple point of care device able to differentiate low molecular weight RSNO from high molecular weight RSNO.

Acknowledgements

CNPq, FAPEG, CAPES, IQ-UFG andINCTBio.

References

2Cardoso, T.M.G.; et al., Anal. Methods 2015, 7, 7311.

Figure 1. Layout of µPAD containing eight zones (a) before and (b) after coupling with a 3D holder for lamps. (c) resulting device showing colored zones after decomposition and Griess reaction for nitrite detection. In (c), the label CZ means control zone.