Goiânia – 2016

A Comparative Study of Groebke-Blackburn-Bienaymé Reactions Catalyzed by M(OTf)₃ under Microwave Heating

Miguel M. Gibeli (IC),¹ Guilherme A. Silva (IC),¹ Gabriela F. D. Santos (IC),¹ Pâmela C. S. Fernandes (IC),¹ <u>Luiz S. Longo Jr.</u> (PQ)¹*

¹ Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema-SP, 09972-270, Brazil.

Keywords: multicomponent reactions, imidazopyridines, metal triflates, microwave.

Abstract

Herein, we present a comparative study of Groebke-Blackburn-Bienaymé reactions catalyzed by $M(OTf)_3$ (M = Sc, La, Gd, Eu, La, Y, Yb, In and Bi) under microwave heating which furnished imidazopyridines as products in good to excellent yields.

Introduction

Multicomponent reactions (MCRs) are processes involving three or more starting materials combining together in a single step to afford a product with high atom efficiency.¹ 1H-Imidazo[1,2-a]pyridine moiety is present in several compounds with important biological activities such as Alpidem[®] (anxiolytic) and Zolpidem[®] (hypnotic). This scaffold is easily accessed *via* the Groebke-Blackburn-Bienaymé reaction (GBB) between an isocyanide, an aldehyde and an amidine.² So far, several different protocols for GBB MCR have been published elsewhere, most of them employing acid catalysts and common solvents under reflux for prolonged reaction times.^{1d.e} In this work we describe our results on the investigation of such reaction catalyzed by different metal triflates under microwave heating.

Results & Discussion

Firstly, we selected two model reactions to be studied. Then, 2-aminopyridine, benzaldehyde, *tert*-butylisocyanide or methyl isocyanoacetate and 5 mol% of the catalyst were dissolved in MeOH and heated at 150°C for 30 minutes in a microwave sealed vial (Table 1).

The use of $Sc(OTf)_3$ in GBB reactions are very common, despite the fact that no systematic study on the use of this catalyst under microwave heating was reported until now. In our hands, reactions using 5 mol% of $Sc(OTf)_3$ led to 1 and 2 in 76% and 98% yield, respectively (entries 1 and 10). Uncatalyzed reaction led to the product 2 in only 13% yield (entry 9). Then, we carried out a screening of different metal triflates in order to find cheaper alternatives to more expensive $Sc(OTf)_3$. For instance, the yields obtained for 2 with cheaper $Gd(OTf)_3$ and La(OTf)_3 were 90% in both cases (entries 11 and 12). In general, the yields were quite similar with those obtained for 1 and 2 when $Sc(OTf)_3$ was used (entries 1-8 and 10-17). **Table 1.** $M(OTf)_3$ -catayzed GBB reactions under microwave heating.

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Entry	Catalyst	Product	Yield
1	Sc(OTf) ₃	1	76%
2	Gd(OTf) ₃	1	69%
3	La(OTf) ₃	1	49%
4	Y(OTf)₃	1	62%
5	Yb(OTf) ₃	1	65%
6	Eu(OTf) ₃	1	68%
7	Bi(OTf) ₃	1	65%
8	In(OTf)₃	1	70%
9	No catalyst	2	13%
10	Sc(OTf) ₃	2	98%
11	Gd(OTf) ₃	2	90%
12	La(OTf) ₃	2	90%
13	Y(OTf)₃	2	60%
14	Yb(OTf) ₃	2	73%
15	Eu(OTf) ₃	2	72%
16	Bi(OTf) ₃	2	83%
17	In(OTf) ₃	2	82%

Reagents & Conditions: 2-Aminopyridine (1.0 mmol), benzaldehyde (1.0 mmol), *tert*-butylisocyanide or methyl isocyanoacetate (1.0 mmol) in MeOH (3.0 mL) and 5 mol% of M(OTf)₃ were stirred at 150°C for 30 minutes under microwave heating in a sealed tube (Anton Paar Microwave 300).

Conclusions

In this comparative study, we showed that cheap metal triflates catalysts such as $La(OTf)_3$ or $Gd(OTf)_3$ can be reasonable alternatives for $Sc(OTf)_3$ in Groebke-Blackburn-Bienaymé reactions carried out under microwave heating. The extension of this protocol to new nitrogen heterocycles with different substitution pattern is undergoing in our laboratory.

Acknowledgment

FAPESP, CNPq, CAPES.

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

^{*} luiz.longo@unifesp.br

¹ For some recent reviews on MCR and GBB reactions see: (a) Brauch, S.; van Berkela, S. S.; Westermann, B. *Chem. Soc. Rev.* **2013**, *42*, 4948; (b) Liu, Z.Q. *Curr. Org. Synth.* **2015**, *12*, 20; (c) Cioc, R. C.; Rujter, E.; Orru, R. V. A. *Green Chem.* **2014**, *16*, 2958; (d) Bagdi, A. K.; Santra, S.; Monir, L.; Hajra, A. *Chem. Commun.* **2015**, *51*, 1555; (e) Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. *Synthesis* **2015**, *47*, 887.

² (a) Bienaymé, H.; Bouzid, K. Angew. Chem. Int. Ed. 1998, 37, 2234;
(b) Blackburn, C. Tetrahedron Lett. 1998, 39, 5469;
(c) Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998; 661.