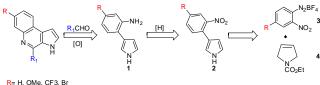
Improved synthesis of natural and unnatural marinoquinolines for biological studies.

<u>Michele Panciera</u> (PG),^a Eric F. S. dos Santos (PG),^a Cristiane S. Schwalm (PG),^a Flávia C. Causs (IC),^a Carlos R. D. Correia (PQ).^a*

^aInstitute of Chemistry, State University of Campinas – Unicamp, C.P. 6154, CEP. 13083-970, Campinas, São Paulo (Brazil).

e-mail: roque@iqm.unicamp.br


Keywords: Marinoquinolines, Antimalarial, Heck-Matsuda reaction, Pictet-Spengler.

Introduction

Nitrogen containing heteroaromatic compounds have been playing a crucial role in the treatment of many types of diseases. A less known class of heteroaromatic compounds displays as its main core structure the uncommon tricyclic system 3Hpyrrolo[2,3-c]quinoline. Isolated from extracts of the Rapidithrix thailandica bacteria the marinoquinoline A was the first reported natural product having this skeleton^{1,2}. Five other analogues were discovered later, namely the marinoquinolines B-F, which were extracted from Ohtaekwangia kribensis bacteria³. These compounds have demonstrated moderate antiprotozoal activity against Plasmodium falciparum K1 lineage resistant to chloroquine (IC₅₀ between 1.7 and 15 μ M) and Trypanosoma cruzi (IC₅₀ between 21.8 and 53.1 µM), as well as cytotoxic activity against tumor cell lineages L929, MCF-7 and KB-3-1.

Results and discussion

We describe herein an improved and divergent total synthesis of natural and unnatural marinoquinolines by means of a *Pictet–Spengler* reaction of the key aryl-pyrrole derivative **1** with the appropriate aldehyde, followed by in situ aromatization. The aryl-pyrrole 1 is synthesized from the nitro compounds **2**, which in turn are prepared via a Heck-Matsuda reaction between *N*-protected 3-pyrroline 4 and the aryldiazonium salts **3** following a strategy previously developed in our research group. (Scheme 1).⁴

Scheme 1: Retrosynthetic analysis.

Table 1 shows some preliminary results regarding key improvements in the *Pictet-Spengler* reaction.

Table 1: Pictet-Spengler reactions with different aldehydes.

Entry	R	R ₁	yield %
1	OMe	CH ₃	50
2	OMe	CH₂Bn	63
3	OMe	Bn(<i>p</i> -Cl)	88
4	OMe	CH ₂ CH(CH ₃) ₂	67
5	OMe	Bn	76
6	OMe	Bn(3,5-OMe)	69

Studies are on going to prepare a larger and diversified library of marinoquinoline analogues for pharmacological screening.

Conclusion

Improved syntheses of natural and unnatural marinoquinolines featuring a Heck-Matsuda arylation and the Pictet-Spengler reaction were accomplished. Using this new approach the natural marinoquinolines (A, B, C, and E) and many unnatural analogues were prepared in a concise and efficient manner amenable to biological studies.

Acknowledgments

We thank FAPESP and CAPES for financial support and fellowships.

¹ Sangnoi, Y.; Sakulkeo, O.; Yuenyongsawad, S.; Kanjana-opas, A.; Ingkaninan, K.; Plubrukarn, A.; Suwanborirux, K. *Mar. Drugs* **2008**, 6, 578.

² Kanjana-opas, A.; Panphon, S.; Fun, H.-K.; Chantrapromma, S. Acta Cryst. E 2006, 62, 2728.

³ Okanya, P. W.; Mohr, K. I.; Gerth, K.; Jansen, R.; Müller, R. *J. Nat. Prod.* **2011**, 74, 603.

⁴ Schwalm, C. S.; Correia C. R. D. Tetrahedron Letters 2012, 53, 4840.