Propriedades fotofísicas de complexos dinucleares de lantanídeos.

Lanousse Petiote (PG)¹*, Ítalo O. Mazali¹ (PQ), Fernando A. Sigoli¹(PQ)

*E-mail: lanoussepetiote@gmail.com

¹Laboratório de Materiais Funcionais (LMF), Instituto de Química, UNICAMP, Campinas – SP, Brasil.

Palavras Chave: Luminescência, complexos dinucleares, efeito antena

Introdução

Esse trabalho relata uma investigação das propriedades fotofísicas de uma série de complexos dinucleares de formula geral: [Ln¹(tta)₃tppo-dppeo-Ln²(tta)₃tppo], representados como Ln¹-Ln², onde tppo de trifenilfosfina, óxido tta=2-= tenoiltrifluoroacetonato, Ln¹ ou Ln²=Gd, Eu, Er ou Yb trivalentes е dppeo= óxido de [2-(difenilfosforil)etil]difenil-fosfina. Os complexos foram sintetizados baseando-se no controle da estequiometria e da ordem de adição dos reagentes envolvendo os ligantes fosfinóxidos e os complexos precursores [Ln(tta)₃(H₂O)₂] e foram caracterizados usando as técnicas: ¹H e ³¹P-RMN, análises elementar e termogravimétrica, espectroscopia vibracional no IV e eletrônica no UV-Vis. Nos estudos de fotoluminescência, comparou-se a transferência de energia dos ligantes para os íons Eu^{III}, Er^{III} e Yb^{III} e a possível transferência ligante \rightarrow Yb^{III} \rightarrow Er^{III} no complexo Yb-Er foi investigada.

Resultados e Discussão

Em primeiro lugar foi provada a síntese dos intermediários coletando os espectros de ¹H-RMN dos complexos equivalentes de lantânio. A figura 1 mostra que os complexos foram obtidos com alto grau de pureza.

Figura 1: Espectros de ¹H RMN dos complexos de La(III)

Nos complexos, a banda de estiramento do grupo C=O desloca-se de até 80 cm⁻¹ ao passo que o estiramento da ligação P=O desloca-se de apenas 8 cm⁻¹ indicando maior interação do ligante carregado com o íon Ln(III). Os espectros UV-Vis

38ª Reunião Anual da Sociedade Brasileira de Química

experimentais e calculados mostram as bandas de transições $\pi \leftarrow \pi$ nos ligantes. As curvas termogravimétricas mostram que os complexos são estáveis até 250 °C. Sob excitação na banda de absorção dos ligantes, os complexos apresentam os padrões de emissão característicos das transições ${}^{5}D_{0} \rightarrow {}^{7}F_{j=0-4}, {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}, {}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ nos ions Eu³⁺, Er^{3+} e Yb³⁺, respectivamente, evidenciando a atuação do "efeito antena". Os espetros de excitação mostram um maior favorecimento do efeito antena na ordem Eu^{III}>>Yb^{III}>Er^{III} nos complexos dinucleares homometálicos e uma possível transferência de energia ligantes \rightarrow Yb^{III} \rightarrow Er^{III} no complexo dinuclear Yb-Er.

Figura 2: Espectros de emissão dos complexos de Eu^{III} (esquerda)e Er^{III} , Yb^{III} e Gd^{III}(direita).

Os complexos de Eu^{III} apresentam emissão de alta pureza segundo a CIE-1931 e tempo de vida de emissão na ordem de milissegundos. Os demais complexos apresentam tempos de vida na ordem de microssegundos devido a desativação dos níveis emissores dos íons Er^{III} e Yb^{III} pelos osciladores C-H dos ligantes. O complexo Eu-Eu apresenta o maior rendimento quântico (51%) indicando que a presença de dois centros emissores resulta em uma melhor conversão de energia.

Conclusões

Os complexos dinucleares foram sintetizados de acordo com as formulas moleculares desejadas. Os complexos apresentam estabilidade térmica relativamente elevada. O complexo Yb-Er apresenta as bandas de emissão dos dois centros metálicos após excitação no ligante e mostra-se promissor para desenvolvimento de sondas ópticas bimodais.

Agradecimentos

CAPES, FAPESP, CNPq, INOMAT, IQ-UNICAMP.