Reações de racemização da (S)-(-)-1-feniletilamina e de resolução cinética dinâmica da (±)-1-feniletilamina catalisadas por Pd/MgCO₃

Marina M.M. Ferreira(IC), Gabriela M. Labussiere(IC), Sania M. Lima(PQ), Fernanda A. Siqueira(PQ)* fasiqueira@unifesp.br

Universidade Federal de São Paulo - Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF UNIFESP/Campus Diadema), Rua Prof. Artur Riedel, 275 – Jd.Eldorado – CEP:09972-270 Diadema - SP - Brasil

Palavras Chave: Racemização, DKR, paládio.

Introdução

A resolução cinética dinâmica (DKR-do inglês Dynamic Kinetic Resolution) é uma metodologia eficaz na preparação de compostos opticamente ativos, sendo constituída por duas etapas: a resolução cinética enzimática e a racemização do enantiômero remanescente^{i,ii}

O principal objetivo do presente trabalho foi a preparação e o uso dos catalisadores heterogêneos de Pd suportados em MgCO₃ nas reações de racemização da (*S*)-(-)-1-feniletilamina (**1**) e na DKR da (±)-1-feniletilamina (**2**).

Resultados e Discussão

Foram preparados 3 catalisadores de paládio inéditos suportados em MgCO $_3$ contendo 2,5% 4,7% e 10% de paládio metálico, por meio da metodologia de deposição-precipitação, utilizando Pd(OAc) $_2$ como material de partida. iii,iv,v A caracterização dos catalisadores, quanto a sua composição e tamanho de partícula foi realizada pela técnica de difração de raios-x, cujos difratogramas apresentaram linhas em 2 Θ = 40,1, 46,7, 68,1 e 82,1°, características do paládio na fase metálica. Os tamanhos de partículas foram estimados a partir da largura integral da linha de maior intensidade usando a equação de Scherrer.

As atividades catalíticas foram avaliadas a partir de reações de racemização de 1. A reação de 1 com o catalisador 10% Pd/MgCO₃ forneceu a amina 2 em 68% ee. Ao substituir o catalisador pelo 2,5% Pd/MgCO₃, obteve-se 2 em 2% ee e 34% de rendimento, no máximo. Já as reações com o 4,7% Pd/MgCO₃ levaram a 2 em 9% ee e rendimento de 58% (Tabela 1, entrada 1). Esse catalisador foi selecionado para estudarmos a influência do solvente, da temperatura e do uso de aditivo tanto no rendimento como no excesso enantiomérico.

A reação de DKR de **2** com o catalisador que contém 10% Pd levou à correspondente acetamida (**3**) em 50% de rendimento e 95% ee, após otimizações. Substituindo o catalisador por 2,5% Pd/MgCO₃, obteve-se o acetato **3** em 32% de rendimento e 96% ee. Os melhores resultados foram obtidos com o uso do catalisador 4.7% Pd/MgCO₃. Após otimizações foi possivel obter a acetamida desejada em 98% de rendimento e excesso enantiomérico superior a 99% (Tabela 2, entrada 2).

Tabela 1. Racemização de **1** com 4,7% Pd/MgCO₃.

NH₂
4,7% Pd/MgCO₃
2

Entrada	Solvente	Aditivo	T (°C)	η(%)	ee%
1	Tolueno	-	80	58	9
2	Tolueno	-	60	43	60
3	Tolueno	Na ₂ CO ₃	60	46	46
4	DMSO	-	80	24	96
5	DMSO	Na ₂ CO ₃	80	17	17
6	DMSO	-	60	10	99
7	CH₃CN	Na ₂ CO ₃	80	7	5
8	CH ₃ CN	-	60	34	3

Tabela 2. DKR de 2 com 4,7% Pd/MgCO₃.

<u> </u>						
Entrada	T (°C)	Agente Acilante	η(%)	ee (%)		
1	80	Ac. de isopropila	63	90		
2	60	Ac. de isopropila	98	>99		
3	60	Ac. de isoamila	82	98		
4	60	Ac. de etila	75	>99		

Conclusões

Foram preparados e caracterizados 3 novos catalisadores de paládio suportados em MgCO₃, os quais tiveram suas atividades catalíticas avaliadas a partir da reação de racemização de 1 em diversas condições reacionais. Os catalisadores foram também utilizados para o estudo das reações de DKR da (±)-1-feniletilamina. Excelentes rendimentos e ee's foram obtidos nas reações catalisadas por 4.7% Pd/MgCO₃.

Agradecimentos

Unifesp Campus Diadema, Instituto Nacional de Tecnologia, Fapesp.

ⁱ Kim, M-J.; Kim, W-H.; Han, K.; Choi, Y. K.; Park, J. Org. Lett, **2007**, 9, 1157.

ii Thalén, L; Bäckvall, J. *Belstein J. Org.Chem.* **2010**, 6, 823-829. iii Parvulescu, A. N.; Jacobs, P. A.; De Vos, D. E. *Chem. Eur. J.* **2007**, *13*, 2034

^{iv}Parvulescu, A. N.; Eycken, E. V.; Jacobs, P. A.; De Vos, D. E. *J. Catal.* **2008**, 255, 206.

^v Parvulescu, A. N.; Jacobs, P. A.; De Vos, D. E. *Appl. Catal. A:Gen* **2009**, *368*, 10.