Ion imprinted polymer for preconcentration and determination of ultratrace of cadmium employing FIA-TS-FF-AAS

<u>Ayla Campos do Lago</u>¹ (PG), Camila Marchioni² (IC), Tássia Venga Mendes² (IC), Célio Wisniewski² (PQ), Pedro Sergio Fadini¹ (PQ), Pedro Orival Luccas²* (PQ)

¹Universidade Federal de São Carlos (UFSCar-SP), Departamento de Química, Rodovia Washington Luís, Km 235-SP 310, CEP 16565-905, São Carlos-SP

²Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Química, Rua Gabriel Monteiro da Silva, 714, CEP 37130-000, Alfenas-MG

* pedro.luccas@unifal-mg.edu.br

Key words: cadmium, Ion imprinted polymer, TS-FF-AS, FIA

Introduction

Cadmium can be found as a contaminant in water, foods and also cigarettes¹. It is a toxic element therefore its concentrations must be monitored. Thermospray Flame Furnace Atomic Absorption Spectrometry (TS-FF-AAS) was used in the present work due its good sensitivity². This work's aim was to synthesize a new IIP with cadmium adsorption capacity for using as solid phase extractor coupled on a FIA-TS-FF-AAS system.

Results and Discussion

The synthesis of IIP is show Figure 1.

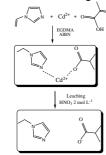


Figure 1. IIP synthesis diagram.

Figure 2. Manifold of the FIA system.

The Figure 2 show FIA-TS-FFAAS manifold for cadmium preconcentration and determination. Eluent: HNO_3 4.8mol L⁻¹ (1.2mL min⁻¹); Sample: 0.01mol L⁻¹ of the phosphate buffer, pH = 5.8.

The eluent concentration and also the pH and buffer concentration were assessed using a full 2³ factorial design. The significant parameter (pH and eluent concentration) was optimized employing a Doehlert matrix. The obtained optimum values were: pH of 5.8

38^ª Reunião Anual da Sociedade Brasileira de Química

and concentration of 0.48mol L^{-1} . The buffer concentration value was fixed at 0.01mol L^{-1} . The detection and quantification limits were of 24 and 81ng L^{-1} , respectively. The preconcentration factor was 165; consumptive index 0.06mL; concentration efficiency, readings frequency 25h⁻¹. Table 1 shows determination of Cd(II) in different samples.

 Table 1. Cd(II) determination and recovery in spiked different samples.

Samples	Cd(II) added amount (μg kg ⁻¹)	^a Cd(II) found amount (μg kg ⁻¹)	Recovery (%)
Jewelry	0	2.38±0.28	-
	50	65.48±0.24	106.0
Green tea	0	3.85±013	-
	50	54.24±0.19	102.2
Cigarette	0	38.37±0.22	-
	50	83.02±0.20	94.0
Hair	0	0.35±0.02	-
	50	49.86±0.11	99.4

^aResults are expressed as mean value \pm standard deviation based on three replicates (*n=3*).

Conclusions

The present work reported the synthesis and use of an ion imprinted polymer for on line preconcentration and Cd determination in FIA system with detection by TS-FF-AAS. The method was applied in samples of: jewelry, green tea, hair and cigarettes and the results are satisfactory.

Acknowledgements

The authors would like to acknowledge the assistance of CNPq, FAPEMIG and CAPES for the financial support and fellowships.

¹ Santos, J. S.; Santos, M. L. P.; Conti, M. M.; Santos, S. N. and Oliveira, E. *Food Chem.* **2009**, *115*, 1405.

² Gáspár, A. and Berndt, H. Spectrochim. Acta. **2010**, 55, 587-597.