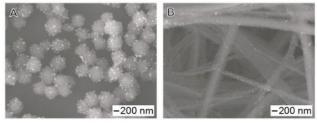
Catalysts Based on TiO₂-Au Hybrids Supported on Carbon for the Electrogeneration of H₂O₂: Investigating the Effect of TiO₂ Shape

Flávia E. Reis¹ (PG), <u>Vanessa S. Antonin²</u> (PG), Peter Hammer³ (PQ), Mauro C. dos Santos² (PQ), Pedro H. C. Camargo¹ (PQ)*

vanessa.antonin@ufabc.edu.br

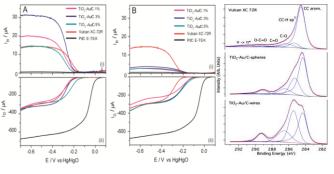
¹ Instituto de Química - Universidade de São Paulo, São Paulo, Brasil.

- ² LEMN CCNH Universidade Federal do ABC, Santo André, Brasil.
- ³ Instituto de Química Universidade Estadual Paulista, Araraquara, Brasil.


Keywords: TiO₂, hybrids, ORR, RRDE, H₂O₂ electrogeneration.

Introduction

In this work, we describe a facile strategy for the synthesis of well-defined TiO₂ morphologies (colloidal spheres and wires) decorated with Au nanoparticles displaying monodisperse sizes and uniform distribution over the TiO₂ surface, followed by the investigation of their electrocatalytic activity towards the electrogeneration of H₂O₂ by the oxygen reduction reaction (ORR) using the rotating ring disk electrode technique (RRDE).


Results and Discussion

colloidal spheres and The TiO₂ wires were synthetized according to previously reported protocols^{1,2} physical and were employed as templates for the nucleation and growth of Au NPs over their surface. Our approach employed water or EG as solvent, ascorbic acid as a reducing agent, PVP as a stabilizer, and $AuCl_{4(aq)}$ as the Au precursor. Figures 1A and B show SEM images of the hybrid materials.

Figure 1. SEM images for TiO_2 colloidal spheres (A) and wires (B) decorated with Au NPs.

The electrocatalytic activity of TiO_2 -Au materials towards the ORR as a function of the TiO_2 shape was investigated. For this purpose, the TiO_2 -Au materials were supported on Vulcan XC-72R carbon to prepare TiO_2 -Au/C catalysts with 1, 3, and 5 % w/w loading. Figure 2A and B shows the polarization curves for the ORR promoted by TiO_2 -Au/C. To obtain information to which extend the addition of both TiO_2 -Au/C 3% electrocatalysts influences the local structure of the Vulcan XC-72R support, and consequently the catalytic activity of the system, XPS C 1s and O 1s high-resolution core-level spectra were recorded as depicted in Figure 2C.

Figure 2. (A) Steady-state polarization curves for the ORR of different proportions of TiO_2 -Au colloidal spheres or (B) wires supported on Vulcan XC-72R carbon. (C) Deconvoluted C 1s XPS spectra of the Vulcan XC 72R support and of the TiO_2 -Au/C 3% based materials.

Regarding the TiO₂ colloidal spheres decorated with Au NPs, our results show that the TiO₂-Au/C 3% loading had the highest ring currents, indicating higher H₂O₂ electrogeneration. The hybrid materials prepared by using TiO₂ wires decorated with Au NPs presented current values significantly lower than pure carbon. The quantitative XPS analysis showed that the morphological difference between TiO₂-Au nanomaterials and the strong reduction of the conductivity of the carbon support might be the principal cause for the reduced electrocatalytic activity TiO₂-Au/C wires based material.

Conclusions

According to the presented results, TiO_2 -Au/C with 3% colloidal spheres supported on carbon XC-72R is a promising material to be used in H_2O_2 electrogeneration.

Acknowledgements

This work was supported by FAPESP (grant numbers 2013/19861-6 and 2011/21656-6) and CNPq (grant numbers 471245/2012-7, 474913/2012-0 and 406612/2013-7).

¹Damato,T.C.; de Oliveira, C.C.S.; Ando, R.A. and Camargo, P.H.C. *Langmuir*, **2013**, 29, 1642.

² Yoshida, R.; Suzuki, Y. and Yoshikawa, S. *J. Solid State Chem.* **2005**, 178, 2179.