Chemical and Pharmacological Study of the Sponge *Plakortis angulopiculatus* from the northeastern coast of Brazil.

Amanda L. Quintela (IC)¹, Evelyne A. Santos (PG)², Elthon G. Ferreira (PG)³, Thiciana S. Sousa (PQ)¹, Francisco das Chagas L. Pinto (PG)¹, Maria da Conceição M. Torres (PQ)¹, Edilberto R. Silveira (PQ)¹, Otília Deusdênia L. Pessoa (PQ)¹, Letícia V. Costa–Lotufo (PQ)², Paula Christine Jimenez (PQ)^{3,4}

Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60.021–970, Brazil.

² Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE,60.430–270, Brazil.

أ Instituto de Ciências do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, CE,60.165–081, Brazil.

^{*} Departamento de Ciências do Mar, Universidade Federal de São Paulo/Baixada Santista, Santos, SP 11030-400, Brazil.

Keywords: Plakortidis angulopiculatusx, endoperoxides, marine natural products, cytotoxic activity

Introduction

Sponges are one of the most relevant sources of bioactive compounds from the marine environment. Since the isolation of the arabinonucleosides from *Cryptothetya crypta*, those marine organisms have provided thousands of secondary metabolites, many of which are under preclinical evaluation or clinical status for drug development.¹ Sponges from the genus *Plakortis* are typically recognized as sources of cyclic endoperoxides containing five– or six–membered rings,² which are known to retain antiparasitic, antimicrobial and anticancer activities³. This work describes the chemical and pharmacological study of the crude extract from specimens of *Plakortis angulospiculatus* collected from the northeastern coast of Brazil.

Results and Discussion

The ethanol extract of *P. angulospiculatus* was subjected to several fractionation columns of silica gel, followed by HPLC analysis (semi-preparative normal phase) culminating in the isolation eight compounds. The structures of all compounds isolated were determined using a combination of HRESIMS, IR and 1D/2D NMR spectroscopy. Thus, the structures of the compounds were determined as: 7,8-dihydroplakortide E (1), 6-*epi*plakortide H (2), 6-desmethyl-6-ethyl-spongosoritin A, 6desmethyl-6-ethyl-spongosoritin–9,10-

dihydrospongosoritin A, spongosoritin A, 9,10dihydrospongosoritin A and 11,12-dihydroplakortide P. Compounds **1** and **2** are new (Figure 1). The isolated compounds were evaluated in vitro against a panel of human tumor cells. All compounds, with the exception of **1** (inactive), were active against both tumor HCT-116 and PC-3M cells, with IC₅₀ values ranging from 0.2 μ M to 92.1 μ M.

Figure 1: Structures of the new compounds isolated from *P. angulospiculatus.*

Conclusion

The chemical prospection of the marine sponge *P*. *angulospiculatus* allowed the isolation and structural elucidation of eight plakortides, two of which are new, 7.8-dihydroplakortide E and 6-epi-plakortide H. The cytotoxic activity assays of the isolated compounds showed very promising results, emphasizing the pharmacological potential of this class of natural products.

Acknowledgements

CNPq, CAPES e FUNCAP

 ¹ Leal, M.C.; Puga, J.; Serôdio, J.; Gomes, N.C.M.; Calado, R. *Plos One*, **2012**, *7*, e30580.
²Faulkner, D. J. *Nat. Prod. Rep.* **2001**, *18*, 1–49.
³Costantino, V.; Fattorusso, E.; Menna, M.; Taglialatela–Scafati, O. *Curr. Med. Chem.* **2004**, *11*, 1671–1192.