# Theoretical thermodynamics of the synthesis of Eu(TTA)<sub>3</sub>(RSOR,TPPO) complexes by substitution reactions

Isabella D. M. S. Rosado (IC), Gerson P. C. Jr (IC), Cristiano E. L. Júnior(IC), Anderson I. S. Silva(PG), and Nathalia B. D. Lima (PQ)\*

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE.

Keywords: sparkle model, substitution reactions,  $\beta$ -diketonate, mixed ligand complexes.

#### Introduction

Luminescent europium ß-diketonate complexes are used in various important applications, such as in MOF's<sup>1</sup> as pH sensors<sup>2</sup>. The asymmetry of mixed europium complexes Eu(β-diketonate)<sub>3</sub>(L,L'), leads to the intensification of the quantum yield and emission efficiency quantities when compared with what would be expected for the complexes with repeating ligands  $Eu(\beta$ -diketonate)<sub>3</sub>(L)<sub>2</sub> and  $Eu(\beta$ diketonate)<sub>3</sub>(L')<sub>2</sub>. In this work we performed Sparkle/AM1<sup>3</sup> calculations of displacement reactions of type  $Eu(TTA)_3(RSOR)_2 + TPPO \rightarrow$ the Eu(TTA)<sub>3</sub>(RSOR,TPPO) + RSOR, as well as Eu(TTA)<sub>3</sub>(TPPO)<sub>2</sub>  $RSOR \rightarrow Eu(TTA)_3(RSOR,$ + TPPO) + TPPO with RSOR being DBSO, PMSO, DPSO and PTSO. The molecular structures of the ligands are shown in Figure 1.



**Figure 1.** Molecular structures of the ligands considered in this work.

## **Results and Discussion**

All calculations were carried out for the isolated molecules with the Sparkle/AM1 available in MOPAC 2012. The geometries were fully optimized in all cases and correspond to true energy minima as verified by the absence of imaginary vibrational frequencies by a subsequent force constant calculation, which are necessary for the calculation of the thermodynamic quantities. Table 1 shows all calculated thermodynamic quantities for the possible displacement reactions of the type TPPO Eu(TTA)<sub>3</sub>(RSOR)<sub>2</sub>  $\rightarrow$ Eu(TTA)<sub>3</sub>(RSOR,TPPO) + RSOR, as well as  $Eu(TTA)_3(TPPO)_2 + RSOR \rightarrow Eu(TTA)_3(RSOR)_3$ TPPO) + TPPO.

38<sup>ª</sup> Reunião Anual da Sociedade Brasileira de Química

### Synthesis of Eu(TTA)<sub>3</sub>(L,L') complexes:

$$\begin{split} Eu(TTA)_3(DBSO)_{2}+ TPPO \rightarrow Eu(TTA)_3(DBSO, TPPO) + DBSO\\ \Delta Hr=&-16.9 \text{ kcal/mol}, \Delta Gr=&-8.8 \text{ kcal/mol} \end{split}$$

 $\begin{array}{l} Eu(TTA)_{3}(TPPO)_{2}+ \ DBSO \rightarrow Eu(DBM)_{3}(DBSO,TPPO) + TPPO \\ \Delta Hr= +17.4 \ kcal/mol, \ \Delta Gr= +9.0 \ kcal/mol \end{array}$ 

$$\begin{split} & \textbf{Eu}(\textbf{TTA})_3(\textbf{DPSO})_{2}+\textbf{TPPO}\rightarrow \textbf{Eu}(\textbf{TTA})_3(\textbf{DPSO},\textbf{TPPO})+\textbf{DPSO}\\ & \boldsymbol{\Delta}\textbf{Hr=-15.6 \ kcal/mol}, \ \boldsymbol{\Delta}\textbf{Gr=-0.9 \ kcal/mol}\\ & \textbf{Eu}(\textbf{TTA})_3(\textbf{TPPO})_{2}+\textbf{DPSO}\rightarrow \textbf{Eu}(\textbf{TTA})_3(\textbf{DPSO},\textbf{TPPO})+\textbf{TPPO}\\ & \boldsymbol{\Delta}\textbf{Hr=+23.4 \ kcal/mol}, \ \boldsymbol{\Delta}\textbf{Gr=+5.1 \ kcal/mol} \end{split}$$

 $\begin{array}{l} \textbf{Eu}(TTA)_3(PMSO)_{2}+ TPPO \rightarrow \textbf{Eu}(TTA)_3(PMSO,TPPO) + PMSO\\ \Delta \textbf{Hr=+5.0 kcal/mol}, \Delta \textbf{Gr=+31.5kcal/mol}\\ \textbf{Eu}(TTA)_3(TPPO)_{2}+ PMSO \rightarrow \textbf{Eu}(TTA)_3(PMSO,TPPO) + TPPO\\ \Delta \textbf{Hr=+39.2 kcal/mol}, \Delta \textbf{Gr=+39.5 kcal/mol} \end{array}$ 

 $\begin{array}{l} \textbf{Eu}(TTA)_3(PTSO)_{2}+ TPPO \rightarrow \textbf{Eu}(TTA)_3(PTSO, TPPO) + DPSO\\ \Delta \textbf{Hr=-38.0 kcal/mol}, \Delta \textbf{Gr=-22.4 kcal/mol}\\ \textbf{Eu}(TTA)_3(TPPO)_{2}+ PTSO \rightarrow \textbf{Eu}(TTA)_3(PTSO, TPPO) + TPPO\\ \Delta \textbf{Hr= 0.0 kcal/mol}, \Delta \textbf{Gr=-31.6 kcal/mol} \end{array}$ 

Figure 2. Sparkle/AM1 thermodynamic data for the theoretical possibilities of displacement reactions for the preparation of  $Eu(TTA)_3(RSOR,TPPO)$  complexes from  $Eu(TTA)_3(RSOR)_2$  or  $Eu(TTA)_3(TPPO)_2$  complexes.

In all cases the TPPO ligand was capable of displacing the sulfoxide ligands since the enthalpies and Gibbs free energies of the reaction  $Eu(TTA)_3(RSOR)_2 + TPPO \rightarrow Eu(TTA)_3(RSOR,TPPO) + RSOR$  are lower than the corresponding reactions  $Eu(TTA)_3(TPPO)_2 + RSOR \rightarrow Eu(TTA)_3(RSOR, TPPO) + RSOR$ .

## Conclusion

In conclusion, the enthalpies and Gibbs free energies of the reactions, calculated by the semiempirical Sparkle/AM1 model show that the reaction  $Eu(TTA)_3(RSOR)_2 + TPPO \rightarrow Eu(TTA)_3(RSOR,TPPO) + RSOR$ , is predicted to be more likely to occur.

### Acknowledgments

CNPq, PRONEX/FACEPE and PROAES/UFPE.

<sup>&</sup>lt;sup>1</sup>. P.P. Lima, F.A.A. Paz, C.D.S. Brites, W.G. Quirino, C. Legnani, M. Costa e Silva, Org. Electron **2014**, 15 798–808.

Y. Lu, B. Yan, Chem. Commun. (Camb) 2014, 50 13323–6.
FREIRE, Ricardo Oliveira ; COSTA JÚNIOR, Nivan Bezerra da ; ROCHA, Gerd Bruno ; SIMAS AM. Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, & General Theory, 2006, v. 110, n.17, p. 5897-5900,