Propriedades luminescentes de compostos de coordenação bimetálicos heteronucleares baseados nos íons Dy³+ e Eu³+.

Elaine Cristina Muniz¹ (PG), Marcelo Galindo Lahoud¹ (PG), Higor H. de S. Oliveira^{1,2} (PG), Marco Aurélio Cebim¹ (PQ), Regina C. G. Frem¹ (PQ)*.

1 Universidade Estadual Júlio de Mesquita Filho, Instituto de Química, Unesp. Campus de Araraquara 2 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, IFSP. Campus Matão

Palavras Chave: Compostos bimetálicos heteronucleares, íons lantanídeos, emissão seletiva.

Introdução

Os íons lantanídeos trivalentes (Ln3+) têm sido utilizados em diversos sistemas ópticos devido suas notáveis propriedades luminescentes, como alta pureza de cor, tempo de vida que varia de nano a milissegundos e linhas de emissão bem definidas e estreitas (transições 4f-4f)1. No entanto, devido à natureza proibida das transições 4f-4f, os íons Ln3+ possuem baixo coeficiente de absortividade molar. Essa característica pode ser contornada pela coordenação dos íons Ln3+ a ligantes orgânicos de elevada absortividade molar de modo que os estados 4f excitados do íon metálico possam ser populados a partir da transferência de energia ligante→Ln³+, fenômeno denominado efeito antena. Além disso, novos materiais com propriedades luminescentes interessantes podem ser obtidos pela combinação e/ou dopagem de dois ou mais íons Ln^{3+ 2}. Dentro dessa perspectiva, foram preparados e caracterizados nesse trabalho, compostos de coordenação bimetálicos heteronucleares baseados nos íons Dy³⁺ e Eu³⁺.

Resultados e Discussão

Os complexos [Dy_{2-2x}Eu_{2x}(dcpz)₂(suc)(H₂O)₈].1,5H₂O (onde x = 0,0, 0,05, 0,10, 0,15, 0,20, 0,25, 0,50 e 1,0 e dcpz = 3,5-dicarboxipirazolato e suc = succinato) foram preparados utilizando metodologia empregada na obtenção de compostos de coordenação bimetálicos de íons lantanídeos³. A **Figura 1** mostra a estrutura cristalina do complexo (x = 0,50) obtida a partir da difração de raios X de monocristal.

Figura 1. Diagrama ORTEP do complexo (x = 0.5) de fórmula molecular [DyEu(dcpz)₂(suc)(H₂O)₈].1,5H₂O.

Medidas de reflectância difusa mostram uma banda larga e intensa abaixo de 320 nm atribuída à absorção dos ligantes e na região entre 400 e 800 nm, são observadas bandas estreitas e de menor intensidade atribuídas às transições intraconfiguracionais dos íons Dy³⁺ e Eu³⁺. A intensidade dessas bandas é proporcional à quantidade de cada íon no complexo, de modo que 38º Reunião Anual da Sociedade Brasileira de Química

a análise da série de compostos de x=0,05 a 0,50 mostra o aumento da intensidade das bandas atribuídas ao íon Eu^{3+} e a diminuição da intensidade das bandas atribuídas ao íon Dy^{3+} . Para x=0,0 (Dy^{3+} 100%) e 1,0 (Eu^{3+} 100%) observam-se somente as bandas atribuídas aos íons Dy^{3+} e Eu^{3+} , respectivamente.

espectroscopia de fotoluminescência, espectros de excitação dos complexos bimetálicos apresentam diferentes heteronucleares Quando monitorada a emissão do íon Eu3+ $(^{5}D_{0} \rightarrow {}^{7}F_{2},$ 616 nm), apenas as transições intraconfiguracionais do íon Eu3+ são observadas. Já ao monitorar a emissão do íon Dy^{3+} (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, 572 nm), observam-se somente as transições intraconfiguracionais relacionadas ao íon Dy3+. O mesmo ocorre nos espectros de emissão. A excitação nos níveis intraconfiguracionais do íon Eu³⁺ (⁷F₀→⁵L₆, 394 nm) resulta na emissão apenas deste íon, sendo observadas as transições características ⁵D₀→⁷F_J. Já a partir da excitação nos níveis intraconfiguracionais do íon Dy³+ (6H_{15/2}→4I_J, 387 nm), apenas as bandas atribuídas à emissão do Dy³⁺ são observadas. Sendo assim, não são observadas transferências de energia entre os íons Ln³+, seja Dy³+→Eu³+ ou Eu³+→Dy³+. No entanto, quando a excitação se dá via transferência de carga dos ligantes para os metais (TCLM, 270 nm), observam-se as bandas relacionadas à emissão de ambos os íons, visto que os ligantes transferem energia tanto para os íons Dy3+ quanto para os íons Eu³⁺. Com a excitação via TCML, a cor luz observada é resultado da emissão de ambos os íons (Dy³+, verde e Eu³+, vermelho) e pode ser controlada em função da proporção Dy3+:Eu3+. Cálculos de índice de cor plotados em diagrama CIE Lab® mostram que a cor emitida varia do vermelho (Eu3+ 100%) à proximidade do branco (Dy3+ 100%).

Conclusões

Os complexos estudados apresentam propriedades espectroscópicas interessantes, sendo possível controlar a cor da emissão em função da proporção Dy³+:Eu³+ e da excitação seletiva, que permite estimular a emissão de um ou outro íon ou mesmo de ambos, quando a excitação se dá via TCLM.

Agradecimentos

Os autores agradecem ao CNPq e à FAPESP pelo apoio financeiro e ao IQ-UNESP pela infraestrutura.

¹ Eliseeva, S. V.; Bunzli, J. C. G. New Journal of Chemistry, **2011**, *35*, 1165-1176.

² Lahoud, M. G. et al. *Polyhedron*, **2013**, *54*, 1-7.

³ Gao, C. et al. *Inorganic Chemistry*, **2014**, 53, 935–942.