Synthesis of crystalline Nd:YVO4 nanoparticles obtained by the nonhydrolytic Sol-Gel process.

Julio T. Tanaka(PG)*, Barbara A. Miura(IC), Eduardo J. Nassar(PQ), Lucas A. Rocha(PQ)*

Av. Dr. Armando Salles, 201, Parque Universitário, CEP 14404-600 Franca, SP *tanakajulio@hotmail.com

keywords: Nd: YVO4, non-hydrolytic Sol-Gel process

Introduction

Neodymium-doped yttrium orthovanadate Nd:YVO4 is a very powerful solid-state laser material. Nd³⁺ ions in this material present a broad and strong absorption band around 808 nm and a very intense emission in the 1 µm range, presenting many applications in the fields of military, industry, medical treatment and scientific research. Compared with a conventional Nd:YAG crystal, Nd:YVO₄ offers many advantages such as a broader absorption bandwidth, a larger effective stimulated emission cross-section, and a higher allowed doping level [1]. Among the various methodologies, the non-hydrolytic sol-gel process stands out as one of the most advantageous: it yields highly pure products (the metallic oxides originate in situ) with fewer pores; occurs at relatively low temperatures; provides strict control of stoichiometry, powder morphology, and phase purity; cations are distributed all over the polymeric structure; and is easier to reproduce [2]. This work reports the synthesis, characterization and photoluminescence properties of Y_(x)Nd_(0.01)VO₄, where x = 0.99 and 0.49% mol) obtained by the nonhydrolytic Sol-Gel route and annealed at 800 and 1000 °C during 4h. The samples were characterized by X-ray diffraction and photoluminescence.

Results e Discussion

Fig. 1 show the X-ray diffraction patterns of the samples annealed at 800 and 1000 °C. It can be seen that the heat treatment temperature does not significantly alter the crystal structure of YVO₄, presenting peaks that can be indexed to the tetragonal structure YVO₄ (JCPDS # 16-250). However, the Y_(0.99)Nd_(0.01)VO₄ and Y_(0.49)Nd_(0.01)VO₄ samples presented peaks that could be indexed to the cubic structure of Y₂O₃ (JCPDS # 41-1105) and the orthorhombic structure of V₂O₅ (JCPDS # 41-1426), respectively.

Figure 1. X-ray diffraction patterns for the samples: a) $Y_{(0.39)}Nd_{(0.01)}VO_4$ and b) $Y_{(0.49)}Nd_{(0.01)}VO_4$ annealed at different temperatures.

Figures 2 and 3 show the excitation and emission spectra of Nd³⁺ ions in the Y_(0.99)Nd_(0.01)VO₄ and Y_(0.49)Nd_(0.01)VO₄ samples annealed at different temperatures. From the excitation spectra, it can be observed for all samples bands between 500 and 900 nm assigned to the Nd³⁺ transitions. In addition, a broadband around 310 nm was observed and is related to the charge transfer (CTB) from the V⁵⁺ – O²⁻ the VO₄³⁻ group [3]. However, relative intensity of the CTB was higher for the Y_(0.49)Nd_(0.01)VO₄ sample.

Figure 3: $Y_{(0,49)}Nd_{(0,01)}VO_4$ luminescence spectr recorded at room temperature: a) excitation spectrum (λ_{em} : 1076 nm) and b) emission spectrum (λ_{em} : 310 nm).

For the emission spectrum, there are two major bands, one at about 1076 nm attributed to the transition ${}^{4}F_{3/2} - {}^{4}I_{11/2}$ and the other at 1344 nm attributed to the transition ${}^{4}F_{3/2} - {}^{4}I_{13/2}$ of Nd³⁺ ion.

Conclusion

Nd:YVO₄ nanoparticles were prepared by the non-hydrolytic Sol-Gel process and from the results obtained, it was observed that the concentration of the Y³⁺ ions can directly influences on the crystalline structure of the material and the luminescent properties.

Acknowledgement

The authors acknowledge FAPESP, CNPq, CAPES and IFSP-Sertãozinho

³⁸ª Reunião Anual da Sociedade Brasileira de Química

¹ Wang, Z. et al. Optics & Laser Technology 33 (2001) 47-51.

² Nassar, E. J. et al. QUIMICA NOVA, v. 28 n.2, p. 238-243, 2005.

 $^{^3}$ Saltarelli M., et al. J Sol-Gel Sci Technol. DOI 10.1007/s10971-014-3525-z.