Tumorigenic biomembrane morphology: Comparison between directly endothelial cell-spread monolayer and DPPC-based biomimetic systems

Andrei Sakai¹ (PG), Ana Paula S. Mesquita² (PG), Carla C. Lopes² (PQ), Luciano Caseli¹* (PQ)

¹Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, Hybrid Materials Laboratory, Diadema city, São Paulo State, Brazil. ²Federal University of São Paulo, Molecular Biology Department, Carl Peter von Dietrich Laboratory, São Paulo city, São Paulo State, Brazil.

Palavras Chave: trastuzumab, Langmuir, biomembrane, DPPC, cancer

Introduction

Trastuzumab (Tmab) is a monoclonal antibody administered in adjuvant and neoadjuvant therapy of HER2-positive breast cancer and gastric cancer cases. Studies concerning physical-chemical analyses of the tumorigenic biomembrane morphology and the complex Tmab-HER2 receptor through Langmuir technique are scarcely found in literature.

In this study, endothelial cell lines¹ derived from rabbit aorta (EC/parental), EC transfected with EJras oncogene (EJ-ras EC) and EC *anoikis* resistant (Adh-EC) were directly spread and analyzed through Langmuir films (monolayers). Afterwards, DPPC(dipalmitoylphosphatidylcholine)-based

systems were assembled and compared to directly cell-spread monolayers. Investigation about molecular architecture of the tumorigenic cell membrane through Langmuir technique may bring new insights for cancer research.

Results e Discussions

Surface pressure versus trough area isotherm (π -A) for Adh2-EC line exhibits monolayer formation and collapse ca. 30 mN/m which is proximate value for cell membrane pressure (Figure 1a). Moreover, surface potential curve indicates molecular ordering between 400 and 360 cm² (Figure 1a) and hysteresis assay curve shows expansion of the monolayer in the second compression-decompression cycle (Figure 1b).

38ª Reunião Anual da Sociedade Brasileira de Química

Figure 1. (a) Surface pressure versus trough area isotherm (black line) and surface potential curve (blue line); (b) hysteresis assay curve.

Polarization modulated infrared reflection-absorption spectroscopy (PM-IRRAS) spectrum for Adh2-EC line indicates occurrence of proteins in the monolayer (amide I and II bands ca. 1650 cm⁻¹ and 1550 cm⁻¹) (Figure 2a). Brewster-angle microscopy (BAM) endorses stable monolayer formation and indicates presence of domains, that may be related to rich-in-protein regions (Figure 2b).

Conclusions

Directly Adh2-EC cell-spread monolayers enabled the identification of components of cell membranes, which can be useful to understand the action of Tmab in to cells.

Acknowledgements

Acknowledgements for CNPq, CAPES and FAPESP funding agencies and Genentech Inc.

¹ Carneiro, B. R.; Pernambuco Filho, P. C. A.; Mesquita, A. P. S. et al. PLoS ONE **2014**, *9*(*12*): *e116001*.