Study of conditional parameters on the luminescent properties of Nb₂O₅:La³⁺,Tm³⁺ materials obtained by the non-hydrolytic Sol-Gel process.

Susane B. Moscardini (IC), Lidia R. Oliveira (IC), Eduardo J. Nassar (PQ), Lucas A. Rocha (PQ)*

Universidade de Franca- Av. Dr. Armando Salles de Oliveira, 201 - CP.82 - CEP 14404 600 - Franca – SP. email: susane_moscardini@hotmail.com

Keywords: Luminescence, Thulium, non-hydrolytic Sol-Gel process

Introduction

Currently, solid-state white light emitters (LEDs) are considered the next generation of solid-state light sources. Bearing in mind that illumination consumes about 33% of all the generated energy, the development of energy-saving systems has become fundamental from a technological standpoint [1]. Ultraviolet (UV) radiation provides high excitation energy, so a new strategy to obtain white light relies on the use of near UV radiation by LEDs coated with blue/areen/red luminophores. Because the luminescence properties of rare earth ions are sensitive to the chemical environment, the choice of host is crucial.

In this sense, niobium oxide doped with La³⁺ has emerged as a promising material for multifunctional applications. Its band gap is around 4.8 eV; it has a relatively low cut-off phonon energy of 900 cm⁻¹ and a high refractive index; it emits blue and UV light when excited with UV and X-ray radiation, respectively. Among the various methodologies that are available to synthesize luminophores, the nonhydrolytic sol-gel process stands out as one of the most advantageous: it yields highly pure products with fewer pores; occurs at relatively low temperatures and is easier to reproduce [3]. Here, we report the study of Tm³⁺ concentration (1 and 3% mol/mol) in the Nb₂O₅:La matrix prepared by the non-hydrolytic Sol-Gel route and annealed at 550 and 900°C during 4h. The samples were characterized diffraction by X-ray and photoluminescence.

Results and Discussion

The X-ray diffractograms of the samples annealed at 550 °C present peaks that can be indexed to the orthorhombic phases of the Nb₂O₅ (JCPDS # 30-873) and Nb₃O₇Cl (JCPDS # 73-295). The material annealed at 900°C also showed two distinct phase formed by the monoclinic structure of Nb₂O₅ (JCPDS # 15-166) and by the orthorhombic structure of La₂Nb₁₀O₂₈ (JCPDS # 20-547). However, increasing thulium concentration favors the onset of cubic phase indexed to the Tm₂O₃ (JCPDS # 76-160). Figures 1 and 2 show the excitation and 38° Reunião Anual da Sociedade Brasileira de Química

emission spectra of Tm³⁺ ions in the samples annealed at different temperatures. From excitation spectra, it can be noted that the sample annealed at 900°C presented two broad bands at approximately 260 nm and 395 nm referring to the charge transfer matrix. The transition ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ (Tm³⁺) was observing in the emission spectra only for samples annealed at 900°C. This is related to the crystalline structure of the matrix in which the Tm³⁺ ions are embedding, since higher processing temperatures provide more crystalline systems.

Figure 1. a) Excitation spectrum (λ_{em} : 454 nm) and b) emission spectrum (λ_{exc} : 360 nm).

Figure 2. a) Excitation spectrum (λ_{em} : 454 nm) and b) emissiion spectrum (λ_{exc} : 360 nm).

Conclusion

Nb₂O₅:La³⁺,Tm³⁺ luminescent materials were prepared by the non-hydrolytic Sol-Gel process. From the results obtained, it was observed that the heat treatment temperature and the concentration of the Tm³⁺ ions can directly influence on the crystalline structure of the material and the luminescent properties.

Acknowledgement

The authors acknowledge FAPESP, CNPq and CAPES. Companhia Brasileira de Metalurgia e Mineração is acknowledged for the generous donation of NbCl₅.

HUANG, J. et al. Journal of Rare Earths, v.28, n.3, p.356-360, 2010.
NASSAR, E. J. et al. Quimica Nova, v. 28 n.2, p. 238-243, 2005.