New In-Se-Cu ternary clusters: synthesis, characterization and applications.

Melina de Azevedo Mello (PG)*, Ernesto Schulz Lang (PQ).

Laboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria – RS, 97105-900, Brazil.

Palavras Chave: In-Se-Cu clusters, synthesis, characterization, photocatalytic applications.

Introduction

Group-III binary chalcogenide materials exist in a number of forms (ME and M_2E_3 ; M = Ga, In, E = S, Se, Te) and phases. In addition to the binary systems, there is an interesting family of related ternary systems, I-III-VI (CuME₂; M = Ga, In; E = S, Se), that are related with significant and promising research for applications in photovoltaics and photocatalysis, especially in association with TiO₂. However, as they have not been studied extensively for this purpose, optimization is still needed.¹

In order to contribute to this field, the goal of our work is to synthesize new In-Se-Cu ternary clusters using indium(III) selenolates as starting material.

Results and Discussion

Indium(III) phenylselenolate – $In(SePh)_3$ – reacts with Cu(PPh₃)Cl, in solvothermal conditions, to give golden crystals of $[Cu_4In(PPh_3)_3SePh(\mu-SePh)_3(\mu_3-SePh)_3]$ (1), according Scheme 1.

Scheme 1. Synthetic route to obtain compound 1.

Figure 1 shows the molecular structure of 1.

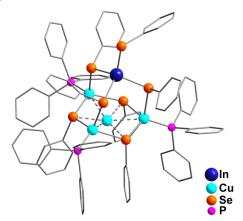


Figure 1. Molecular structure of 1.

The indium(III) derivative $-Brln(p-SeC_6H_4NMe_2)_2$ - can be obtained from the oxidative insertion of InBr into the Se-Se bond of bis[(p-N,N-dimethylaminophenyl)] diselenide $-(p-SeC_6H_4NMe_2)_2$. In the presence of Cu(PPh₃)Br, this

38ª Reunião Anual da Sociedade Brasileira de Química

In^{III} arylchalcogenolate generates $[Cu_6In_2(PPh_3)_2(\mu - p-SeC_6H_4NMe_2)_6(\mu_3-p-SeC_6H_4NMe_2)_4Br_2]$ (**2**, Figure 2) as shown in Scheme 2.

InBr + $(\rho$ -SeC₆H₄NMe₂)₂ THF; Ar; r.t. Cu(PPh₃)Br THF; Ar; r.t.

[Cu₆In₂(PPh₃)₂(μ-*p*-SeC₆H₄NMe₂)₆(μ₃-*p*-SeC₆H₄NMe₂)₄Br₂] 2

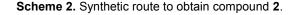


Figure 2. Molecular structure of 2.

The optical band gap energy (E_g) of compounds **1** and **2** were estimated based on the UV-Vis diffuse reflectance spectra and the material absorption coefficient (α) were related to the sample diffuse reflectance (r) by the Kubelka–Munk function.² To **1**, E_g is 2.50 eV and to **2**, E_g is 2.51 eV.

Conclusions

Considering the E_g values obtained to the compounds, experiments of hydrogen production using compound **1** as photocatalyst are being performed and preliminary results are promising.

Aknowledgments

We are grateful to CNPq, CAPES and FAPERGS.

¹ Dahl, M.; Liu, Y.; Yin, Y. Chem. Rev. 2014, 114, 9853.

² Tirloni, B.; Lang, E. S.; de Oliveira, G. M.; Piquini, P.; Hörner, M. *New J. Chem.* **2014**, *38*, 2394.