Obtenção da 5-p-nitrofenil-10,15,20-tris(3-piridil)porfirina: precursora de uma porfirina de baixa simetria para aplicação em terapia fotodinâmica.

Ana Clara Boechat Morato (IC), Camila Soares Monteiro (PG), Sophia Vieira Macedo (IC), Dayse Carvalho da Silva Martins* (PQ) *daysecsm@yahoo.com.br

Departamento de Química - Instituto de Ciências Exatas - Universidade Federal de Minas Gerais

Palavras Chave: Porfirina de baixa simetria, terapia fotodinâmica, fotossensibilizador.

Introdução

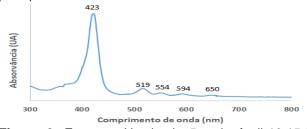
A Terapia Fotodinâmica (TFD) é uma modalidade alternativa de intervenção terapêutica no tratamento do câncer e algumas doenças não oncológicas, baseada na combinação de oxigênio, luz e um fotossensibilizador (FS).¹ Diversos compostos fotossensíveis tem sido estudados para uso em TFD, dentre os quais se destacam as porfirinas.² Porfirinas catiônicas de baixa simetria tem se mostrado promissoras para uso como FS em TFD³, inclusive em estudos de fotoinativação de microrganismos.⁴

O objetivo deste trabalho envolve a preparação de uma porfirina inédita a ser usada como FS em TFD. Apresenta-se aqui a obtenção da precursora (Figura 1) da porfirina desejada, que será obtida em etapas posteriores

Figura 1. Porfirina 5-p-nitrofenil-10,15,20-tris(3-piridil)porfirina (H_2P) obtida.

Resultados e Discussão

A porfirina H₂P foi obtida por meio de adaptação do método de Biron e Voyer:5 em um balão tritubulado contendo ácido propiônico (500 mL), e anidrido acético a 110 °C, foram adicionados mL), nitrobenzaldeído (12,86761 piridina-3g) carboxaldeído (14,8 mL). Em seguida, adicionou-se lentamente o pirrol previamente destilado (14,5 mL). A reação foi mantida sob refluxo por 90 minutos. A mistura resultante foi neutralizada com solução 1 mol/L NaOH, em banho de gelo. O sólido foi filtrado e lavado com a solução de NaOH (3x) e com água destilada (3x). O sólido roxo foi recolhido com CH2Cl2 e teve este solvente removido em evaporador rotatório.


O sólido foi analisado por CCD (SiO_2 e clorofórmio amoniacal:metanol 9,5:0,5) e observou-se que ele continha seis porfirinas diferentes, além de polipirrol. Dessa forma, o sólido bruto foi submetido a cromatografia em coluna (CC) com SiO_2 , com misturas de clorofórmio:etanol, em gradiente de polaridade.

38ª Reunião Anual da Sociedade Brasileira de Química

A purificação por coluna foi eficiente para separar as porfirinas do resíduo de polipirrol e agrupá-las em frações com menor número de porfirinas. Não foi possível isolar qualquer porfirina.

As frações obtidas na CC foram submetidas à cromatografia em placa preparativa (SiO₂ e clorofórmio amoniacal:metanol 9,5:0,5).

A porfirina de Rf 0,68 (SiO $_2$ e clorofórmio amoniacal:metanol 9,5:0,5) foi caracterizada como sendo a 5-p-nitrofenil-10,15,20-tris(3-piridil)porfirina, por meio de espectrometria de massas, por RMN 1 H e espectroscopia eletrônica UV-vis (Figura 2): ESI-MS (modo positivo): m/z 707,427264 [M-H+2Na]+; RMN 1 H (200 MHz, CDCl $_3$): δ 8,80 a 8,93 (d; 8H; β -pirrólicos); δ 8,49 a 8,62 (d; 2H; o-H nitrofenil); δ 9,06 a 9,14 (d; 2H; m-H nitrofenil); δ - 2,81 (s; 2H; N-H); δ 9,47 (s; 3H; 2 H 3-piridil); δ 8,62 a 8,74 (d; 3H; 4 H 3-piridil); δ 7,72 a 7,89 (t; 3H; 5 H 3-piridil); δ 8,36 a 8,48 (d; 3H; 6 H 3-piridil).

Figura 2. Espectro Uv-vis da 5-*p*-nitrofenil-10,15,20-tris(3-piridil)porfirina, em CH₂Cl₂.

Conclusões

A reação de síntese levou à formação de seis porfirinas diferentes, sendo a separação em placa preparativa o método mais eficiente de isolamento dos compostos.

A obtenção dessa porfirina estimula a preparação de sua derivada a fim de avaliar seu potencial como FS em TFD, por meio de testes físico-químicos e biológicos.

Agradecimentos

UFMG, CNPq, Fapemig, CAPES, Programa Institucional de Auxílio à Pesquisa de Doutores Recém-Contratados da PRPg/UFMG.

¹ Allison, R.R. et al. *Photodiagn Photodyn Ther.* **2005**, 2, 205. ² Fischer, F. et al. *Clin. Chim. Acta.* **1998**, 247, 89. ³ Pavani, C. et al. *Photochem. Photobiol.Sci.*, **2009**, 8, 233. ⁴ Dai, T.; Huang, Y.; Hambli, M. R. *Photodiagnosis Photodyn.* Ther.,**2009**, 6, 170. ⁵ Biron, E; Voyer, N. *Org. Biomol. Chem.* **2008**, 6, 2507.