Aplicação do nanocompósito GO/TiO₂ na degradação fotocatalítica de diclofenaco de potássio.

<u>Arlene B. S. Nossol¹ (PG)</u>, Edson Nossol^{1,2} (PQ), Aldo J. G. Zarbin¹ (PQ), Patricio G. Peralta-Zamora^{1*} (PQ)

Palavras Chave: Fotocatálise heterogênea, nanocompósito, óxido de grafeno, diclofenaco de potássio.

Introdução

A contaminação do meio hídrico geralmente está associada às atividades antrópicas, principalmente pela emissão de grandes volumes de resíduos domésticos e industriais, os quais, mesmo após o tratamento por rotinas convencionais disponíveis, ainda apresentam espécies químicas resistentes e tóxicas. Pesquisas visando o aprimoramento de tecnologias alternativas vem sendo realizadas, com destaque para os processos de oxidação avançada, especialmente a fotocatálise heterogênea. Dentro deste contexto, este trabalho avalia a capacidade de degradação fotocatalítica do nanocompósito a base de óxido de grafeno e dióxido de titânio (GO/TiO₂), para remoção do diclofenaco de potássio (DIC).

Resultados e Discussão

O nanocompósito óxido de grafeno/TiO₂ (NC GO/TiO₂) foi preparado pelo método sol-gel modificado.³ Os processos fotocatalíticos foram conduzidos em um reator fotoquímico capacidade útil de 20 mL, equipado com agitação magnética e refrigeração por água. A radiação UV-C foi proporcionada por uma lâmpada a vapor de mercúrio de 125 W, inserida na solução com auxílio de um bulbo de guartzo. Os estudos de degradação realizados em condições previamente otimizadas (pH 4,0 e 200 mg L⁻¹ do fotocatalisador), utilizando-se uma solução aquosa do diclofenaco de potássio (20 mg L¹). A caracterização preliminar do nanocompósito permitiu verificar um teor de TiO2 da ordem de 70 %, assim como uma relação de fases anatase/bruquita de 66/34 (m/m). Nos estudos de degradação fotocatalítica (Figura 1A e 1B), o fotocatalisador de referência (Degussa TiO₂-P25) permitiu a remoção praticamente completa do fármaco em tratamentos de 15 min, assim como a diminuição de aproximadamente 56% da área espectral entre 190 e 600 nm. Também foi observado a redução das duas bandas presentes em 198 e 274 nm (em torno de 67 % para ambas).

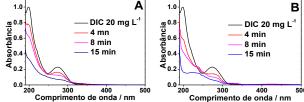


Figura 1. Evolução da área espectral para a degradação do DIC com (A) P25 e (B) NC GO/TiO₂.

Por sua vez, o NC GO/TiO_2 apresentou uma diminuição de 62 % da área espectral, com redução de 82 % da banda em 198 nm e 71 % da banda em 274 nm. A remoção do DIC por fotólise foi pouco eficiente, com diminuição de 22 % da área total.

Tabela 1. Resultados obtidos para a degradação fotocatalítica do DIC.

Amostra	198 nm	274 nm	Área
	% Redução (15 minutos)		
Fotólise	30	27	22
P25	66	68	56
NC GO/TiO ₂	82	71	62

Conclusões

Os resultados obtidos para os tratamentos fotocatalíticos demonstram que o NC $\mathrm{GO/TiO_2}$ apresentou melhores resultados, quando comparado com o fotocatalisador padrão utilizado, o $\mathrm{TiO_2}\text{-P25}$, em um tempo reduzido de tratamento, sendo que somente a fotólise contribui muito pouco para a remoção do fármaco.

Agradecimentos

UFPR, CAPES, CNPq e Fundação Araucária (PR).

^{*} zamora @ufpr.br

¹Universidade Federal do Paraná – Centro Politécnico – Jardim das Américas. CEP 81531-990 Curitiba –PR

²Universidade Federal de Uberlândia – Campus Santa Mônica – Av. João Naves de Ávila, 2121, CEP 38400-902, Uberlândia- MG

¹Bones, J.; Thomas, K.; Nesterenko, P. N.; Paull, B.; *Talanta*, **2006**, 70, 5, 1117.

²Oliveira, M.M.;Schnitzler, D. C.; Zarbin, A. J. G.; *Chem. Mater.*, **2003**, 15, 1903.