Investigação da influência dos ligantes terminais na interação de carboxilatos trinucleares de rutênio com albumina de soro humano

Felipe Costa Claro Reis (PG)*, Camila Fontes Neves da Silva (PG), Sofia Nikolaou (PQ).* felipecosta_reis@hotmail.com

Palavras Chave: carboxilatos trinucleares de rutênio, ligantes terminais, HSA.

Introdução

A albumina é a proteína mais abundante no plasma, sendo possível supor que qualquer metalofármaco administrado irá apresentar algum tipo de interação esta macromolécula¹. Desta forma, o metabolismo e a eficácia de muitos fármacos no corpo estão correlacionados com as suas interações e afinidades com a albumina¹. A investigação do tipo de ligação entre complexos e esta proteína tem se tornado alvo de muitos estudos. Resultados de pesquisas deste tipo fornecem informações importantes sobre as características estruturais que influenciam na eficácia terapêutica compostos como potenciais metalofármacos². Com isso, neste trabalho, apresentam-se os resultados da interação da albumina do soro humano (HSA), com carboxilatos trinucleares de rutênio do tipo [Ru₃O(CH₃COO)₆(CH₃OH)₂(CO)][Ru₃O(CH₃COO)₆(4-acpy)₂(CO)] (4-acetilpiridina) (2). Em termos estruturais, a diferença entre eles reside no fato de que o complexo (1) apresenta dois pontos lábeis (moléculas de metanol), enquanto no caso do complexo (2) têm-se ligantes piridínicos com grupos funcionais passíveis de sofrerem interações específicas com a HSA.

Resultados e Discussão

A interação dos complexos com a HSA foi avaliada por meio da técnica de fluorescência, pois a diminuição de sua intensidade pode evidenciar a região na qual estão ocorrendo modificações ou interações com HSA1. A fluorescência da HSA foi monitorada por registros dos espectros de emissão de fluorescência, no comprimento de onda de excitação de 280 nm, o qual excita principalmente os sítios de triptofano e tirosina. O experimento foi realizado utilizando-se tampão Trizma® (pH=7,4 - 0,1 mol L⁻¹), com solução de HSA (10⁻⁶ mol L⁻¹), com sucessivas adição da solução do complexo, para os dois complexos em estudo (o estudo foi monitorado a 30°C). No cálculo dos parâmetros envolvidos nas interações, utilizou-se o modelo matemático de Stern-Volmer. Os parâmetros foram calculados por meio das Equações 1 e 2 e os valores encontrados para os complexos (1) e (2) encontram-se na Tabela 1, onde: K_{SV}=constante de supressão; Kb=constante de ligação; n=número de sítios de interação da HSA. 38ª Reunião Anual da Sociedade Brasileira de Química

Equação 1:

$$rac{F_0}{F}=\mathbf{1}+k_q au_0[m{Q}]=\mathbf{1}+K_{sv}[m{Q}]$$
Equação 2:

$$\log(\frac{F_0-F}{F}) = \log K_b + n \log[Q]$$

Tabela 1. Resultados dos parâmetros de Sterm-Volmer.

	$K_{sv}(M^{-1})$	R⁴	$K_b (M^{-1})$	N	R⁴
Complexo 1	8,67x10 ³	0,99	$3,05x10^3$	0,90	0,99
Complexo 2	3,72x10⁴	0,99	4,04x10 ⁴	1,01	0,99

Com os valores apresentados na Tabela 1, podemos observar que o valor obtido da constante de ligação (K_b) do complexo (2) com a HSA, é cerca de treze vezes maior que o valor encontrado para o complexo (1). Isto indica que o complexo (2) apresenta afinidade maior para se ligar aos sítios da biomolécula, fato esse que justifica os valores encontrados para K_{sv}, onde nota-se uma eficiência de supressão quatro vezes maior para o complexo (2). Esta observação pode ser justificada pelo fato do complexo (2) apresentar ligantes piridínicos (sítios hidrofóbicos) que possuem alta afinidade pelos sítios I e II localizados na HSA². No caso do complexo (1) as moléculas de solvente, (metanol), coordenadas não apresentam afinidade significativa com os tais sítios.

Conclusões

Nesta investigação, foi possível observar que os ligantes piridínicos coordenados exercem uma grande influência nos modos de interação entre o complexo e a HSA. A grande diferença no valor de K_b entre o complexo (1) e (2) indica que há uma ligação forte entre os ligantes piridínicos e os sítios da proteína. Desta forma, outros estudos serão realizados para estabelecer os mecanismos de interação entre os complexos e a HSA e também a natureza da interação envolvida nestes dois casos.

Agradecimentos

Ao laboratório do Prof. Dr Roberto Santana da Silva. À FAPESP, CAPES E CNPq.

Departamento de Química - Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - Av. Bandeirantes, 3900, CEP 14040-901 - Monte Alegre - Ribeirão Preto - SP.

¹Guo, X.; Zhang, L.; Sun, X.; Han, X.; Guo, C.; Kang, P. Journal of Molecular Structure 2009, 928, 114-120.2 Eftink, M. R. Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. Plenun Press, 1991. ²Kragh-Hansen, U.; et al. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological & pharmaceutical bulletin, 25, 6, 695-704, 2002.