Study on the glycosylation of cyclohexanol with different D-glucosamine-derived glycosyl donors and catalysts

Wagner G. Canhestro (IC)¹, Lucas L. Franco (PG)², Ricardo J. Alves (PQ)^{*1}, José D. S. Filho (PQ)²

*dylancover@gmail.com

¹Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, ²Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Keywords: Glycosylation, Glycosides, N-acetyglucosamine.

Introduction

Peracetylated cyclohexyl *N*-acetylglycosaminide **1** presents anti-inflammatory activity due to inhibition of toll-like receptor 4 $(TLR4)^{1}$. It is prepared by the glycosylation of cyclohexanol with oxazoline **2** in the presence of copper (II) chloride as catalyst¹.

Figure 1. Structure of *N*-acetylglycosaminide 1 and oxazoline 2.

Due to its interesting biological properties, the synthesis of **1** using other glycosyl donors and catalysts are of interest.

There are several glycosyl donors and catalysts described in the literature for the synthesis of *N*-acetyglucosamine glycosides^{2,3}. In the present work we selected four glycosyl donors (**3-6**, **Figure 2**) and silver trifluormethanesulfonate, silver carbonate and mercuric bromide/mercuric oxide as catalysts to compare their efficiency in glycosylation of cyclohexanol.

Figure 2. Structures of halides 3-6.

The cyclohexyl glycosides from 4-6 can be converted into *N*-acetyl derivative **1** by known procedures^{2,4}.

Results and Discusions

The scheme for the glycosylation of cyclohexanol with glycosyl halides **3-6** using the three catalysts cited above is shown in **Figure 3** and the results are presented in **Table 1**.

Figure 3. Synthetic scheme of glycosylation of cyclohexanol with 3-6.

Table 1. Results of studied reactions.

Donor	CF₃SO₃Ag (A)*		Ag₂CO₃ (B)*		HgBr₂/Hg₂O (C)*	
	Yield	Time	Yield	Time	Yield	Time
3	-	24h	-	24h	-	24h
4	-	24h	-	24h	-	24h
5	44%	5h	58%	50 min	39%	15h
6	-	24h	-	24h	-	24h

* Temperature: A and B: room temperature 2,3 ; C: $65^{\circ}C^{4}$

The glycosyl donor **5** was the only halide derivative that allowed the glycosylation to occur. The Ag_2CO_3 catalyst was the most efficient.

The halides **3**, **4** and **6** did not act as glycosyl donors in any of the reaction conditions employed, up to 24 hours. In these cases, after work-up the products of hydrolysis **7-9** were obtained (**Figure 4**).

Figure 4 – Products of hydrolysis 7, 8 and 9.

Conclusions

Compound **5** as glycosyl donor and silver carbonate as catalyst was the most efficient condition for the glycosylation of cyclohexanol and can be considered for the glycosylation of other alcohols.

Acknowlegdments

CAPES, FAPEMIG, CNPq and UFMG.

¹Neol, M.D., et al, PLOS One, **2013**, 8,e65779.

²Benoub, J. Chem. Rev., **1992**, 92, 1167.

³Shapiro, D., *et al*, Chem Phys Lipids, **1973**, 10, 28.

38ª Reunião Anual da Sociedade Brasileira de Química

⁴ Martins-Teixeira, M. B., et al, Biorg & Med. Chem., 2013, 21, 1978.