Conformational study of 2-bromo-1-(furan-2-yl)ethanone and 2-bromo-1-(5-nitrofuran-2-yl)ethanone

<u>Jéssica Valença¹</u> (PG)*, Paulo Roberto Olivato¹ (PQ)*, Daniel Nopper Silva Rodrigues¹ (PQ)

¹ Instituto de Química, Universidade de São Paulo, São Paulo, Brasil, *e-mail: jvalenca@iq.usp.br, prolivat@iq.usp.

Key words: Conformational Analysis, infrared Spectroscopy, Theoretical Calculations

Introduction

In the present work, the conformational analysis of 2-bromo-1-(furan-2-yl)ethanone **A** and 2-bromo-1-(5-nitrofuran-2-yl)ethanone **B** (Scheme 1) was performed through IR spectroscopy in solvents of increasing polarity supported by theoretical calculations.

Scheme 1. Compounds A and B

Results and Discussion

The compounds **A** and **B** are commercial (Ablock Pharmatech).

The IR carbonyl stretching bands (v_{CO}) were obtained, for compounds **A** and **B** in solvents of increasing polarity, both in the fundamental (n-C₆H₁₄, CC ℓ_4 , CHC ℓ_3 , CH₂C ℓ_2 , CH₃CN) and in the first overtone (CC ℓ_4) regions to verify the existence of the conformational isomerism.

The analysis of the v_{CO} band of **A** and **B** by *curve fit* program revealed the existence of a doublet in n-C₆H₁₄, CC ℓ_4 , CH₂C ℓ_2 , and CH3CN, being the lower frequency component the most intense one. The increase of the solvent polarity intensifies the doublet higher frequency component, except in CHC ℓ_3 for which a triplet is found.

M052X¹/aug-cc-pVTZ calculations indicate the existence of four conformers in gas phase for **A** and **B**, based on the dihedral angles α - δ (Scheme 1): gauche-anti (g-a)(v_{CO} ca. 1814 cm⁻¹), gauche-syn (g-s) (v_{CO} ca.1817 cm⁻¹), cis-anti (c-a) (v_{CO} ca.1829 cm⁻¹) and cis-syn (c-s) (ca. v_{CO} 1841 cm⁻¹) with relative populations about ca. 80%, 7% 13%, and 1% respectively.

The results of the solvation calculations by Polarizable Continuum Model (PCM) in the solvents n-C₇H₁₆, CC ℓ_4 , CHC ℓ_3 , CH₂C ℓ_2 , CH₃CN, indicate that the relative population of the conformer with the higher polarity *c*-*s* increases as the solvent polarity *38*^a Reunião Anual da Sociedade Brasileira de Química

increase and the population of the conformer g-s decrease.

The computed NBO (*Natural Bond Orbital*) for compounds **A** and **B** suggests that the conformers gauche relative to the α dihedral angle (g-a and g-s) are stabilized by $\sigma_{C(3)\text{-}Br(4)}/\pi^*_{C(2)=O(1)} \pi^*_{C(2)=O(1)}/\sigma^*_{C(3)\text{-}Br(4)}$, $\sigma_{C(3)\text{-}Br(4)}/\sigma^*_{C(2)=O(1)}$, and $\pi_{C(2)=O(1)}/\sigma^*_{C(3)\text{-}Br(4)}$ interactions.

Additionally the *cis* conformers (*c-s* and *c-a*), are poorly stabilized by $\sigma_{C(3)-Br(4)}/\sigma^*_{C(2)-C(5)}$ and $\sigma_{C(2)-C(5)/\sigma^*_{C(3)-Br(4)}}$ interactions.

The lower stability of the *sin* conformers (*g*-s and *c*-s) relative to *anti* conformers (*g*-a and *c*-a), occur due to the repulsive electrostatic interaction between negatively charged oxygen atoms O(1)...O(6) which are at a distance of *ca.* 0,34 Å smaller than the sum of Van der Waals radii.

The comparison between the experimental IR spectra and the computed PCM data for **A** and **B** in n-C₆H₁₄ CC ℓ_4 , CH₂C ℓ_2 , CH₃CN, allows us to assign the higher frequency v_{CO} doublet component to the *c*-*a* and *c*-*s* conformers, and the lower frequency component to the *g*-*a* and *g*-*s* ones.

The abnormal carbonyl triplet observed in the IR spectrum in $CHC\ell_3$ may be justified to specific solvent interactions that continuum models of solvation cannot describe.

All theoretical calculations were performed in Gaussian 09.

Conclusion

The matching between the theoretical results and the analytically resolved IR v_{CO} band in solvents (n- C_6H_{14} CC ℓ_4 , CH₂C ℓ_2 and CH₃CN) allow us to ascribe the *c-a* and *c-s* conformers to the higher v_{CO} frequency component and the *g-a* and *g-s* conformers to the lower v_{CO} frequency component.

Acknowledgements

CNPq, FAPESP, CAPES.

¹ Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory and Comput., 2 (2006), 364-82.