Conformational study of 2-bromo-1-(furan-2-yl)ethanone and 2-bromo-1-(5-nitrofuran-2-yl)ethanone

Jéssica Valenca ${ }^{1}(P G)^{*}$, Paulo Roberto Olivato ${ }^{1}(P Q)^{*}$, Daniel Nopper Silva Rodrigues ${ }^{1}(P Q)$
${ }^{1}$ Instituto de Química, Universidade de São Paulo, São Paulo, Brasil, *e-mail: jvalenca@iq.usp.br, prolivat@iq.usp.

Key words: Conformational Analysis, infrared Spectroscopy, Theoretical Calculations

Introduction

In the present work, the conformational analysis of 2-bromo-1-(furan-2-yl)ethanone A and 2-bromo-1-(5-nitrofuran-2-yl)ethanone B (Scheme 1) was performed through IR spectroscopy in solvents of increasing polarity supported by theoretical calculations.

Scheme 1. Compounds A and B

Results and Discussion

The compounds A and B are commercial (Ablock Pharmatech).

The IR carbonyl stretching bands (v_{co}) were obtained, for compounds \mathbf{A} and \mathbf{B} in solvents of increasing polarity, both in the fundamental $\left(n-\mathrm{C}_{6} \mathrm{H}_{14}\right.$, $\mathrm{CC}_{4}, \mathrm{CHC}_{3}, \mathrm{CH}_{2} \mathrm{C} \ell_{2}, \mathrm{CH}_{3} \mathrm{CN}$) and in the first overtone $\left(\mathrm{CC}_{4}\right)$ regions to verify the existence of the conformational isomerism.

The analysis of the v_{CO} band of \mathbf{A} and \mathbf{B} by curve fit program revealed the existence of a doublet in $n-\mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{CC}_{4}, \mathrm{CH}_{2} \mathrm{C}_{2}$, and CH 3 CN , being the lower frequency component the most intense one. The increase of the solvent polarity intensifies the doublet higher frequency component, except in CHC_{3} for which a triplet is found.

M052X ${ }^{1} /$ aug-cc-pVTZ calculations indicate the existence of four conformers in gas phase for \mathbf{A} and B, based on the dihedral angles $\alpha-\delta$ (Scheme 1): gauche-anti $(g-a)\left(v_{\mathrm{co}}\right.$ ca. $1814 \mathrm{~cm}^{-1}$), gauche-syn (g s) $\left(v_{\mathrm{co}}\right.$ ca. $\left.1817 \mathrm{~cm}^{-1}\right)$, cis-anti (c-a) (v_{co} ca. 1829 cm ${ }^{1}$) and cis-syn (c-s) (ca. $v_{\mathrm{co}} 1841 \mathrm{~cm}^{-1}$) with relative populations about ca. $80 \%, 7 \% 13 \%$, and 1% respectively.

The results of the solvation calculations by Polarizable Continuum Model (PCM) in the solvents $n-\mathrm{C}_{7} \mathrm{H}_{16}, \mathrm{CC} \ell_{4}, \mathrm{CHC} \ell_{3}, \mathrm{CH}_{2} \mathrm{C} \ell_{2}, \mathrm{CH}_{3} \mathrm{CN}$, indicate that the relative population of the conformer with the higher polarity c-s increases as the solvent polarity
increase and the population of the conformer g-s decrease.

The computed NBO (Natural Bond Orbital) for compounds A and B suggests that the conformers gauche relative to the α dihedral angle ($g-a$ and $g-s$) are stabilized by $\sigma_{\mathrm{C}(3)-\mathrm{Br}(4)} / \pi^{*} \mathrm{C}(2)=\mathrm{O}(1) \quad \pi^{*}{ }^{\mathrm{C}(2)=\mathrm{O}(1)} / \sigma^{*} \mathrm{C}(3)-$ $\operatorname{Br}(4), \quad \sigma_{\mathrm{C}(3)-\mathrm{Br}(4)} / \quad \sigma^{*}{ }_{\mathrm{C}(2)=O(1)}, \quad$ and $\quad \pi_{\mathrm{C}(2)=\mathrm{O}(1)} / \sigma^{*} \mathrm{C}(3)-\mathrm{Br}(4)$ interactions.

Additionally the cis conformers ($c-s$ and $c-a$), are poorly stabilized by $\sigma_{C(3)-B r(4)} / \sigma^{*}{ }_{C(2)-C(5)}$ and $\sigma{ }_{C(2)-C(5) /}$ $\sigma^{*}{ }_{C(3)-\mathrm{Br}(4)}$ interactions.

The lower stability of the sin conformers (g-s and $c-s$) relative to anti conformers ($g-a$ and $c-a$), occur due to the repulsive electrostatic interaction between negatively charged oxygen atoms $\mathrm{O}(1) \ldots \mathrm{O}(6)$ which are at a distance of ca. 0,34 \AA smaller than the sum of Van der Waals radii.

The comparison between the experimental IR spectra and the computed PCM data for \mathbf{A} and \mathbf{B} in $n-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{CC}_{4}, \mathrm{CH}_{2} \mathrm{C}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, allows us to assign the higher frequency $v_{c o}$ doublet component to the $c-a$ and c-s conformers, and the lower frequency component to the g - a and g-s ones.

The abnormal carbonyl triplet observed in the IR spectrum in CHC_{3} may be justified to specific solvent interactions that continuum models of solvation cannot describe.

All theoretical calculations were performed in Gaussian 09.

Conclusion

The matching between the theoretical results and the analytically resolved IR v_{co} band in solvents (n $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{CC} \ell_{4}, \mathrm{CH}_{2} \mathrm{C} \ell_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$) allow us to ascribe the $c-a$ and $c-s$ conformers to the higher $v_{c o}$ frequency component and the $g-a$ and $g-s$ conformers to the lower v_{CO} frequency component.

Acknowledgements

CNPq, FAPESP, CAPES.

[^0]
[^0]: ${ }^{1}$ Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory and Comput., 2 (2006), 364-82.

