An efficient, practical and one step procedure to *trans*-3-hydroxy-4- arylpentanones core by Heck-Matsuda reaction

Rafaela C. Carmona¹ (PG) e Carlos Roque D. Correia^{1*} (PQ)

¹Instituto de Química, Universidade Estadual de Campinas-Unicamp, C.P. 6154, CEP 13084-971, Campinas-SP, Brasil roque@iqm.unicamp.br

Keywords: Heck-Matsuda reaction, 4-arylpentanones, desymmetrization

Introduction

The cyclopentane ring is a valuable and important scaffold due to its ubiquitous presence in many natural products and pharmaceuticals, such as prostaglandins and their derivatives.¹ The synthesis of prostaglandin-E remains a challenge because of an unstable β -hydroxy-ketone group and the 3,4-*anti* relationship.² As a synthetic method, the Heck-Matsuda reaction poses as a powerful tool to provide complex molecules in a concise manner³ with atom economy.⁴ Its byproduct is molecular nitrogen. Herein, we report on the desymmetrization of the meso *cis*-4-cyclopentene-1,3-diol (1) to produce trans-3-hydroxy-4-arylpentanones in one step by Heck-Matsuda reaction. This method has an excellent potential for the development of its asymmetric version.

Results and Discussion

We began our studies with a model reaction applying a general procedure previously established in our research group⁵ using Pd(TFA)₂ in methanol at 40 °C. Our initial experiments focused on the feasibility of the racemic Heck arylation employing the *N*,*N*-QuinOX ligand **L1** and a careful evaluation the palladium catalyst loading (Table 1).

Table 1. Evaluations of the Heck-Matsuda arylation.

	N ₂ BF ₄ H OMe 2a Pd(TFA) ₂ L1 ZnCO ₃ MeOH 40 °C		OMe	O N Me Me
Entry	Pd(TFA)₂ (mol%)	Ligand	Time (h)	Yield (%) ^a
1	10	-	5	51
2	10	L1	0.25	99
3	5	L1	1	99
4	2.5	L1	2	98
5	1	11	1	aa

^a Determined by ¹H NMR.

This Heck-Matsuda reaction provided the desired (\pm) -*trans*-3-hydroxyl-4-arylcyclopentanone in high yields and *trans*-stereoselectivity. The use of racemic quinoline oxazoline **L1** ligand furnished the

38ª Reunião Anual da Sociedade Brasileira de Química

best results even when employing a very small amount of 1 mol% of the palladium catalyst (entry 5). Next, we explored the scope for this new Heck-Matsuda reaction varying the electronic and substitution pattern of the arenediazonium tetrafluoroborate salts. Some selected of the Heck products are shown in Figure 1.

Figure 1. Heck-Matsuda scope.

Conclusions

We have developed an efficient arylation of the meso compound *cis*-4-cyclopentene-1,3-diol (1) by a Heck-Matsuda reaction. Our method is extremely practical, mild, can be carried out under "open vessel" conditions and is basically a one step procedure to *trans*-3-hydroxy-4-arylpentanones cores present in many bioactive compounds.

Acknowledgment

We thank the Brazilian National Research Council (CNPq) and the Research Supporting Foundation of the State of São Paulo (FAPESP) for financial support and fellowships.

¹a) Liu, G.; Shirley, M. E.; Van, K. N.; McFarlin, R. L.; Romo, D. *Nature Chem.* **2013**, *5*, 1049. b) Heasley, B. *Current Organic Chemistry* **2014**, *18*, 641.

²a) Hayashi, Y. Umemiya, S. Angew. Chem. Int. Ed. **2013**, *52*, 3450. b) Nicolaou, K. C.; Heretsch, P.; ElMarrouni, A.; Hale, C. R. H.; Pulukuri, K. K.; Kudva, A. K.; Narayan, V.; Prabhu K. S. Angew. Chem. Int. Ed. **2014**, *53*, 10443.

³Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. **2008**, *41*, 40.

⁴Trost, B. M. Science **1991**, 254, 1471.

⁵Oliveira, C. C.; Angnes, R. A.; Correia, C. R. D. *J. Org. Chem.* **2013**, 78, 4373.