a TiO₂/ZnPc composite and of the sacrifice reagent Role of concentration on gaseous hydrogen production by heterogeneous photocatalysis.

Antonio E. H. Machado (PQ)^{*a}; Samuel M. de Oliveira (PG)^a; Antonio O. T. Patrocínio (PQ)^a; Carla E. Hori (PQ)^b.

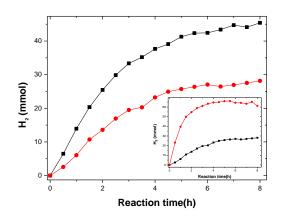
^a Universidade Federal de Uberlândia, Instituto de Química, Laboratório de Fotoquímica e Ciência de Materiais. Av. João Naves de Ávila, 2121 – Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais.

^b Universidade Federal de Uberlândia, Faculdade de Engenharia Química. *Uberlândia, Minas Gerais.*

*e-mail: aehmachado@gmail.com

Keywords: H₂, heterogeneous photocatalysis, TiO2/zinc phthalocyanine, TiO₂, sacrifice reagent.

Introdução


In the present communication we present partial results concerning to the optimization of the process involved in obtaining gaseous hydrogen through heterogeneous photocatalysis.

The experiments were done using a photocatalytic reactor previously reported,¹ using as photocatalysts the TiO₂ P25 Degussa-Evonick and a composite formed by the association of TiO₂ P25 and zinc phthalocyanine (TiO₂/ZnPc 2.5%)^{2,3}, both containing 0.5% m/m of metallic Platinum, used as electron trap, deposited on their surface via photoreduction of hexacloroplatinic acid. The reactions occurred in atmosphere of N₂ using methanol as sacrifice reagent (SR). The pH of the reaction medium was adjusted to 4.5.3 Samples of the gases produced were collected every 30 minutos of reaction and analysed by gas chromatography.

Resultados e Discussão

The ability of TiO_2 P25 and the $TiO_2/FtZn$ composite^{2,3} in catalyzing the production of H₂ in water/methanol solutions, was evaluated. In comparison with TiO₂ P25 (5.3 mmol h^{-1}), the result for the composite implies an increase of 38% (9.5 mmol h^{-1}) in the production of H₂ in 8 hours of reaction, for a concentration of SR equal to 4.9 mol L^{-1} in both cases. This increase may be related to injection of electrons from electronically excited zinc phthalocyanine to the conduction band of TiO₂, favoring the reduction of H^+ in H_2 , Figure 1. An increase in the concentration of SR results in a higher rate of H₂ production, Figure 1 – Insert. An increase of 266% in the rate of H₂ production catalyzed by TiO₂ P25 was observed when the concentration of SR varied from 4.9 mol L⁻¹ to 12.4 mol L^{-1} . This improvement can be explained by the decrease in electron/hole pair recombination in TiO₂, once the SR reacts with the vacancies, giving rise to oxidized species.

Figure 1. H_2 production ([CH₃OH] = 4.9 mol L⁻¹) mediated by: (\blacksquare)TiO₂/ZnPc and (\bullet) TiO₂ P25. **Insert:** Role of CH₃OH concentration on H₂ production by photocatalysis induced by TiO₂ P25: (a) 4.9 mol L and (\bullet) 12.4 mol L⁻¹.

Conclusões

The combination of TiO_2 and ZnPc as well as the increase of proportion of sacrificial reagent are important in improving the process of H₂ production by heterogeneous photocatalysis.

Agradecimentos

To CAPES, FAPEMIG, CNPg and RQ-MG. A.E.H. Machado, A.O.T. Patrocínio and C.E. Hori thank to CNPq for providing their Research Productivity Scolarships. S.M. de Oliveira is grateful to CAPES by granting his Master's Degree Scholarship.

¹ Oliveira, S.M. et al. Resumo publicado no XXVIII ERSBQ/MG -Papel do pH na produção fotocatalítica de hidrogênio, 2014.

² Machado A. E. H. et al. International Journal of Photoenergy, 2008,

v.2008. ³ Machado, A. E. H. et al. In: Solar Radiation, Intech, **2012**, Chap 19, 339-378, Croatia.