Solid-state NMR studies of local structure and lithium mobility $Li_{1+x}AI_xSn_yGe_{2-(x+y)}(PO_4)_3$ glass to ceramic materials

Helio V. A. Baldacim¹(IC), <u>Silvia H. Santagneli</u>^{*1}(PQ), Hellmut Eckert²(PQ)

¹ LaMF, Institute of Chemistry, UNESP, Araraquara

² Institute of Physics, USP, São Carlos

keywords: structure, ionic conductivity, NMR, NASICON.

Introduction

Since the significant development of lithium-ion battery technologies, they have been widely used in various applications ranging from electronic devices to increasing numbers of electric vehicles and largescale energy storage equipment [1]. NASICON (Na Super Ionic Conductor)-type framework reported to be a fast ionic conductor [2]. The glass ceramics have high ionic conductivity at room temperature and good electrochemical stability. The structural aspects of the glass-to-crystal transition in the technologically important ion conducting glass ceramic system of $Li_{1+x}AI_xSn_yGe_{2-(x+y)}(PO_4)_3$ have been examined by complementary multinuclear solid state NMR single ande double-resonance experiments. In the crystalline state, the materials form solid solutions in NASICON structure.

Results and Discussion

Table 1: Sample compositions, Glass transition (Tg) and SS ²⁷Al NMR Lineshape parameters extracted for the individual Al coordination states from TQMAS-NMR data obtained on glassy of $Li_{1+x}Al_xSn_yGe_{2-(x+y)}(PO_4)_3$

	I A A		1/5
Compositions	Tg	AI (δ_{iso})	SOQE
	(°C)	±0.5, ppm	±0.2 (MHz)
x=0 y=0 G	520	-	-
x=0 y=0.5 G	528	-	-
x=0.25 y=0.25 G	538	46.1/9.8/	4.5/2.3/2.0
		-12.5	
x=0.25 y=0.45 G	536	44.6/11.3/	4.7/3.6/2.3
		-15.6	
x=0.25 y=0.25 C	-	-13.8	2.0
x=0.25 y=0.45 C	-	-14.0	2.3

The glass composition obtained and glass transition temperature (Tg) shown in Tab. 1. There is no significant temperature increase in Tg with substitution of germanium by aliovalente ions of AI^{3+} and Sn^{4+} in the network. The ³¹P MAS NMR spectra of glass and crystalline $Li_{1+x}Sn_yAI_xGe_{2-(x+y)}(PO_4)_3$ samples. For the glass samples, broad gaussian-shaped curves are obtained and crystalized samples observed with three distinct compositions sites. The spectra are consistent with the XRD results, suggesting the formation of single-phase materials and small amounts of $LiGe_2(PO_4)_3$ and GeO_2 . In the *38^a Reunião Anual da Sociedade Brasileira de Química*

region between -20 and -40 ppm, multiple signals are observed, whose intensity distribution depends on the aluminum and tin content.

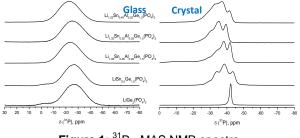
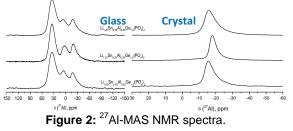



Figure 1: ³¹P - MAS NMR spectra.

The ²⁷AI-MAS NMR spectra obtained for the present glasses. They indicate the presence of four-, five-, and six-coordinated aluminum when the samples are crystallized. All AI resonance at an isotropic chemical shift near -13ppm correspond aluminum six-coordinated.

²⁷Al{³¹P} REDOR data is to indicate that the second coordination sphere of both aluminum species is dominated by phosphorus.

Concluson

- The glasses have different structures of glass ceramics;.

- ²⁷AI–MAS NMR data for glass samples shows AI-IV AI-V and AI-V coordination;

- In glass ceramics, the conversion of AI-IV and AI-V to AI-VI occurred, confirming the data observed by XRD and ³¹P-NMR data, ie the crystallization of NASICON-type structure.

Acknowledgement

FAPESP, proc. 2013/02456-1

[1] <u>J. Mater. Chem. A</u>, 2014, **2**, 5358-5362.

[2] <u>Adv. Funct. Mater</u>., 2013, 23, 947–985.