Unusual Dimeric flavonoids anti-tripanossomal in vitro and in vivo from Arrabidaea brachypoda

Claudia Q. da Rocha1 (PQ), Emerson F. Queiroz2 (PQ), Cassio S. Meira3 (PG), Diogo R. M. Moreira3 (PG), Milena B. P. Soares3 (PQ), Laurence Marcourt2 (PQ), Jean-Luc Wolfender1 (PQ), Wagner Vilegas1 *(PQ)

*vilegasw@gmail.com

1Laboratório de Biodiversidade e Sustentabilidade, Campus Experimental do Litoral Paulista, Universidade Estadual Paulista (UNESP), Parque Bitaru, CEP 11330-900, São Vicente, Brazil

2School of Pharmaceutical Sciences, Phytochemistry and Bioactive Natural Products, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland

3Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua do Leme 1010, 900, São Vicente, Brazil

Keywords: Arrabidaea brachypoda, T. cruzi

Introduction

Chagas disease is a parasitic disease caused by the flagellate protozoan Trypanosoma cruzi. This disease is transmitted to humans mainly in rural endemic areas through the infected feces of triatomine insects. The World Health Organization (WHO) reports that globally approximately 10 million people are infected by T. cruzi, and more than 25 million people are at risk of infection in endemic countries1. The aqueous ethanol extract of the roots from Arrabidaea brachypoda and your three new compounds a Brazilian medicinal plant2, exhibited significant in vitro and in vivo activity against T. cruzi, the parasite responsible for Chagas disease.

Results and Discussion

Targeted isolation of the active constituents led to the isolation of three unusual dimeric flavonoids. The structures were elucidated using UV, ECD, NMR and HRMS analysis, as well as by chemical derivatization (fig 1). The anti-T.cruzi activity and cytotoxicity toward mammalian cells were determined for these substances. Two compounds exhibited selective activity against the trypomastigot and also inhibited the parasite invasion process and its intracellular development in host cells with similar potencies to benznidazole. In addition one compound reduced the blood parasitemia of T. cruzi-infected mice (Tale 1).

Figure 1. HPLC-PDA and structure of Rab-1, Rab-2 and Rab-3.

Figure 2: Evaluation anti T. cruzi of compounds. The compounds Rab-2 and Rab-3 inhibited cell invasion. Mouse macrophages were infected with Y strain trypomastigotes and treated with compounds Rab-2 or Rab-3 (Fig 2a). The treatment with compound Rab-2 substantially reduced the parasitemia in infected mice. (Fig 2b and 2c).

Table 1. Cruzain activity, macrophage cytotoxicity and anti-T. cruzi activity of dimeric flavonoids.

<table>
<thead>
<tr>
<th>Substâncias</th>
<th>% cruzaina inibição a 25 μM</th>
<th>Cibola hospedadoras LC50 (μM)</th>
<th>Y strain T. cruzi, IC50 (μM)</th>
<th>Amastigotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rab-1</td>
<td>0</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>Rab-2</td>
<td>15.65 (0.02)</td>
<td>5.31 (± 1.35)</td>
<td>5.90 (± 0.33)</td>
<td></td>
</tr>
<tr>
<td>Rab-3</td>
<td>17.32 (0.84)</td>
<td>6.03 (± 0.70)</td>
<td>6.54 (± 0.41)</td>
<td></td>
</tr>
<tr>
<td>Recomunizado</td>
<td>-</td>
<td>>20</td>
<td>11.30 (± 1.84)</td>
<td>13.99 (± 39)</td>
</tr>
<tr>
<td>Violeta Genciana</td>
<td>0.48 (0.05)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>E-66c</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

This study has revealed that these two dimeric flavonoids represent potential anti-T. cruzi lead compounds for further drug development. This project resulted in a patent filing (BR10201319279) and a pharmaceutical formulation for topical use.

Acknowledgments

Fapesp (Grant 2013/06188-1 to C.Q.R and Grant 2009/17877-7 to W.V), Capes, Fiocruz, Unesp e Unige.