Efeitos térmicos e do solvente sobre as interações hiperfinas e parâmetros de relaxação de RMN de δ-FeOOH(100) e [MnH₃buea(OH)]²⁻

Alexandre A. de Castro (IC), Mateus A. Gonçalves (PG), Jaqueline Sartorelli (IC), Maíra S. Pires (PG), Silviana Corrêa (PG), Telles C. Silva (PG), Teodorico C. Ramalho (PQ)

*teo@dqi.ufla.br

Laboratório de Química Computacional. Departamento de Química. Universidade Federal de Lavras, Campus Universitário. CEP 37200-000, Lavras-MG

Palavras Chave: agentes de contraste, RMI, cte. de acoplamento hiperfino, DFT.

Introdução

Devido ao seu alto índice de mortalidade, o câncer é um dos grandes problemas que assolam a humanidade¹. Uma das principais razões para isto é a dificuldade de seu diagnóstico na fase inicial da doença. Neste sentido, existem muitas técnicas empregadas no diagnóstico do câncer, sendo que uma das mais usadas é a Ressonância Magnética de Imagem (RMI)². Entretanto, para melhorar as imagens de RMI, agentes de contraste (ACs), que provocam a diminuição dos tempos de relaxação (T₁ e T₂) dos hidrogênios da água, frequentemente usados¹. Recentemente. nanopartículas de óxido de ferro e complexo de Mn²⁺ tem recebido grande atenção devido as suas aplicações em biomedicina como ACs em RMI². Apesar de grande importância, o cálculo dos parâmetros de relaxação de ACs é pouco explorado e os efeitos térmicos e de solvatação são normalmente negligenciados.

Desta forma, o objetivo deste trabalho é estudar a face 100 do δ -FeOOH e o complexo $[MnH_3buea(OH)]^2$, avaliando-se os efeitos térmicos e de solvatação (através dos cálculos de Dinâmica Molecular (DM)) sobre a constante de acoplamento hiperfino (A_{iso}) das moléculas de água, com cálculos em DFT.

Resultados e Discussão

Os cálculos de DM foram realizados em 2,0 ns, na temperatura de 310K com os campos de força NiCH e FeOCH no programa ReaxFF³. As estruturas estatisticamente descorrelacionadas foram submetidas aos cálculos da constante de acoplamento hiperfino (A $_{\rm iso}$) no nível PBE1PBE/EPR-III no Gaussian 09. Efeitos relativísticos foram calculados com o método ZORA no nível PBE/TZ2P, no programa ADF2012. Da simulação de DM foram selecionadas 80 e 208 estruturas para o complexo [MnH $_{\rm 3}$ buea(OH)] $^{\rm 2^-}$ e o δ -FeOOH, respectivamente.

Figura1: Estrutura do complexo [MnH₃buea(OH)]²⁻
Sociedade Brasileira de Química (SBQ)

Tabela 1. Valores de A_{iso} sem e com efeitos relativísticos (em parênteses) para o $[MnH_3buea(OH)]^{2^c}$ (1) e δ –FeOOH (2).

	Nível de aproximação	¹ H (MHZ)	¹⁷ O(MHZ)
1	A_{iso}^{eq} (PBE1PBE(H ₂ O)//PBE1PBE(H ₂ O))	0,10 (0,23)	1,11 (1,62)
	A_{iso}^{eq} (PBE1PBE (H ₂ O)/PCM/PBE1PBE(H ₂ O))	0,11	1,18
	$A_{1SO}^{310K}\left(DM(H_2O)/\!/MD(H_2O)\right)$	0,63	1,94
2	A_{iso}^{eq} (PBE1PBE(H ₂ O)//PBE1PBE(H ₂ O))	2,76 (2,04)	2,80 (2,60)
	A_{iso}^{eq} (PBE1PBE (H ₂ O)/PCM//PBE1PBE(H ₂ O))	2,78	3,10
	$A_{1SO}^{310K}\left(MD(H_2O)/\!/MD(H_2O)\right)$	3,88	3,95

Notação (nível de cálculo A_{iso} //nível de otimização de geometria ou DM)

Quanto maior A_{iso} , maior será a taxa de relaxação para o agente de contraste⁴. Analisando a Tabela 1, pode-se perceber que os efeitos relativísticos e de solvatação não alteram significativamente os valores de A_{iso} , enquanto que o efeito térmico [compare $A_{iso}^{210K}(DM(H_2O)//DM(H_2O))$] e $A_{iso}^{eq}(PBE1PBE(H_2O)/PCM//PBE1PBE(H_2O))$] em $\bf 2$ tem maior influência, 1,8 e 0,8 MHz para 1 H e 17 O, respectivamente. As ligações de hidrogênio do oxigênio da água com os ACs $\bf 1$ e $\bf 2$, comprovada através de cálculos de QTAIM, pode ser uma possível explicação desse fato.

Conclusões

Os resultados indicam que os efeitos térmicos são mais significativos do que efeitos relativísticos e de solvatação sobre os valores de A_{iso} . Os resultados de A_{iso} de 1 e 2 estão próximos aos valores dos complexo de Gd^{2+} . Assim, $[MnH_3buea(OH)]^{2-}$ e δ –FeOOH podem, em principio, ser usados como potenciais agentes de contraste em RMI.

<u>Agradecimentos</u>

¹ Chaudhuri, S.; Pahari, B. P. e Sengupta, P. K. *Biophys. Chem.* **2009**, *139*, 29-36.

² Schwarz, S.; Fernandes, F.; Sanroman, L.; Hodenius, M.; Lang, C.; Himmelreich, U.; Rode, T. S.; Schueler, D.; Hoehn, M.; Zenke, M. e Hieronymus, T. *J. Magn. Magn. Mater.* **2009**, *321*,1533-1538.

³ Aryanpour, M.; Duin, A. C. T. V. e Kubicki, J. D. *J. Phys. Chem.* **2010**, *21*, 6298-6307.

⁴ Gonçalves, M. A.; Peixoto, F. C.; da Cunha, E. F. F. e Ramalho, T. C. *Chem. Phys. Lett.* **2014**, *609*, 88-92.