Synthesis of 2,5-disubstituted selenophenes employing Se⁰/KOH system in ionic liquids

Daniel S. Rampon¹ (PQ), Douglas B. Paixão¹ (IC), Paulo H. Schneider¹* (PQ).

¹ Instituto de Química, Departamento de Química Orgânica, Laboratório de Catálise Molecular (302), Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre/RS, paulos@iq.ufrgs.br.

Keywords: Selenophenes, 1,3-butadiynes, cyclization.

Introduction

Chalcogenophenes heterocycles (S, Se, Te) have numerous uses in biochemistry, physical organic chemistry, organic synthesis and materials chemistry.¹ These compounds have been studied intensively in recent years as organic materials.² these technologies However. as become commercialized, the active compounds will be required in larger amounts. Surprisingly the methods for their preparation are limited; multi-step synthesis, expensive reagents, harsh conditions, and thus their large scale application in industry is limited.³ In the course of our research program dedicated to the selenophene functional development organic materials, we became interested in new methods for synthesis and functionalization of this molecular moiety.⁴ Herein, an approach for harnessing the reactive Se⁰/KOH system employing ionic liquid as polar recyclable solvent in a new methodology for 2,5-disubstituted selenophenes synthesis is reported (figure 1).

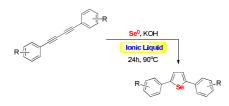


Figure 1. Synthesis of 2,5-disubstituted selenophenes employing ionic liquids.

Results and Discussion

As already described, elemental chalcogens (Y = S, Se, Te) when treated with hydroxide bases undergoes a disproportionation giving the corresponding Y^{2-} nucleophiles.⁵ In this sense, 1,4the diphenylbutadiyne (1) was used as electrophile to suitable reaction conditions reach the for synthesis. selenophene (2) Among solvents evaluated (table 1, entries 1-7), DMSO gave best results (entry 3). Additionally, by use of nonpolar solvent and 18-Crow-6 as additive, the yield of product 2 was increased (entry 7), suggesting the in situ formation of superbasic medium.⁶ This system can furnish stronger bases and nucleophiles for elemental selenium disproportionation and nucleophilic addition of Se²⁻ species to triple bonds, respectively. Another bases were tested (entries 9-11), albeit KOH remains the best result (entry 3). Mild reaction conditions provide lower yield of

compound **2** (entry 12), and harsh conditions, such as elevated temperature and longer times did not improved the yields.

Table 1. Optimization of the reaction conditions.

1 Time (h) 2					
Entry ^a	Solvent	Base	Temperature (°C)	Time (h)	Yield (%) ^b
1	DMF	КОН	90	24	28
2	MeCN	КОН	80	24	0
3	DMSO	КОН	90	24	70
4	DMSO	КОН	25	24	39
5	<i>i</i> -PrOH	КОН	82	24	35
6	EtOH	КОН	78	24	0
7	Toluene	КОН	90	24	0
8	Toluene	KOH/18-Crow-6°	90	24	59
9	DMSO	NaOH	90	24	61
10	DMSO	t-BuOK	90	24	12
11	DMSO	NaH	90	24	14
12	DMSO	КОН	25	24	39
13	[BMMIm][NTf ₂]	КОН	90	24	85

^a 0.25 mmol of 1 / 3.0 equiv. of Se⁰ / 6.0 equiv. of base, under argon atmosphere and deoxygenated solvents (7.5 mL), isolated yields; ^c 20 mol%.

A remarkable raise of reaction yield was achieved in ionic liquids (IL) as solvent (entry 13) given polar nature of reaction. [BMMIm][NTf₂] was the first choice to avoid N-heterocyclic carbene (NHC) formation under this basic reaction condition. Currently, we are working on the IL recyclability, and studying the IL effect on reaction yields, since this solvent could play a task-specific role.⁷

Conclusions

In conclusion, we present here a general and easy method for the synthesis of 2,5-disubstituted selenophenes employing Se⁰/KOH system, with ionic liquids remarkable raising reaction yield. The mechanistic studies and reaction scope are under evaluation.

Acknowledgements

CAPES, CNPq, INCT-CNM FAPERGS e UFRGS.

¹ (a) Patra, A.; et al. *Chem. Mater.* **2011**, *23*, 896. (b) Coropceanu, V.; et al. *Chem. Rev.* **2007**, *107*, 926.

² (a) Lin, L. Y.; et al. Org. Lett. **2011**, 13, 4962; (b) C. Kim, M. C.; et al. Org. Electron. **2010**, 11, 801. (c) Gronowitz, S.; Hornfeldt, A. B. Thiophenes, Elsevier, Oxford, **2004**.

³ Rhoden, C. R. B; Zeni, G. *Org. Biomol. Chem.* **2011**, *9*, 1301. (b) Schipper, D. J.; Fagnou, K. *Chem. Mater.* **2011**, *23*, 1594. Maity, P.; et al. *Org. Lett.* **2014**, *16*, 4122.

⁴ Rampon, D. S.; et al. J. Org. Chem. 2014, 79, 5987.

⁵ Trofimov, B. A.; et al. *Tetrahedron*. **1982**, *38*, 713.

⁶ Yuan, Y.; et al. Adv. Synth. Catal. 2010, 352, 2892.

⁷ (a) Yue, C.; et al. J. Mol. Liq. 2011, 163, 99. (b) Giernoth, R. Angew. Chem. Int. Ed. 2010, 49, 2834.