Produção de carvão ativado assistido por radiação micro-ondas a partir da torta de mamona (*Ricinus communis L.*) usando ZnCl₂ como aditivo.

<u>Davyston Carvalho Pedersoli</u> (IC), Elizângela Augusta dos Santos (PG), Rochel Monteiro Lago (PG), Letícia Malta Costa (PQ). davyston@hotmail.com

1. LEAQUAA. Departamento de Química, ICEx, UFMG, Av. Antônio Carlos, 6627 - Pampulha - Belo Horizonte – MG.

Palavras Chave: Carvão ativo, radiação micro-ondas, adsorção, torta de biodiesel, aditivo ZnCl2.

Introdução

A produção de biodiesel no Brasil é realizada essencialmente pela prensagem mecânica de sementes oleaginosas, como a mamona (Ricinus communis L), levando a produção de grande quantidade de resíduo, denominado torta. As tortas podem ser utilizadas na produção de carvões ativados, rações animais e fertilizantes, dentre outros, favorecendo uma produção sustentável do biocombustível1. Assim, tortas oleaginosas que apresentam características tóxicas. mamona, e não podem ser usadas na alimentação animal necessitam de rotas alternativas de utilização. Portanto, o objetivo deste estudo é a produção de carvão ativado assistido por radiação micro-ondas em um processo de carbonização empregando ZnCl2 como aditivo para produzir um material com maior capacidade adsortiva.

Resultados e Discussão

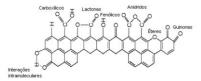

Primeiramente. amostra foi lavada а hexano sequencialmente com mistura e a metanol/clorofórmio 1:2 v/v para a extração da fração oleosa remanescente do processo de prensagem. Com o objetivo de aumentar a porosidade do material para uma maior adsorção, preparou-se uma solução de 0,2 mol/L de ZnCl2 e adicionou-se 35 mL desta solução em 4,0 g de amostra. Uma amostra permaneceu em contato sob repouso com a solução, enquanto a outra sob agitação por 1 hora e 60°C. Os materiais foram secados na estufa a 65°C por 2 horas e depois levados para carbonização no forno com radiação micro-ondas (Tabela 1).

Tabela 1. Carbonização das tortas por radiação micro-ondas.

Tanada is a constant and the constant part to the constant and the constan				
Material	Massa	Massa	Tempo	Perda
	inicial	final	(min)	(%)
Mamona Rep.	4,086	0,903	20	77,9
Mamona Agit.	3,324	1,348	10	59,5

Após carbonização, os carvões foram lavados com água deionizada até pH 6. Posteriormente, os carvões foram caracterizados com IV, RAMAN, TG e Titulação Potenciométrica. Os testes de adsorção foram realizados com diferentes corantes, sempre na concentração de 50 mg/L. As análises por Raman mostraram que a exposição do material a radiação micro-ondas produziu bandas na região de 1360 e 1590 cm⁻¹, conhecidas como bandas G e D, relacionadas a formação de estruturas grafíticas. No

espectro de IV, observou-se bandas intensas na região entre 2500-3000 cm⁻¹ e 1650-1760 cm⁻¹, característico de ácidos carboxílicos. Na Titulação Potenciométrica foi possível identificar três tipos de sítios funcionalizados na superfície dos carvões ativados, sendo eles ácidos carboxílicos, grupos fenólicos e grupos quinona. As estruturas químicas desses grupos funcionais são mostradas na Figura 1.

Figura 1. Grupos funcionais comumente existentes nas superfícies dos carvões ativados.

Testes de adsorção foram realizados empregandose alguns corantes têxteis. Os carvões produzidos após exposição à radiação micro-ondas apresentaram elevada capacidade adsortiva, como pode ser observado na Figura 2.

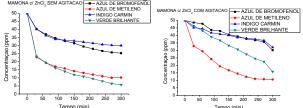


Figura 2. Cinética de adsorção para os diferentes carvões com os corantes texteis.

Os carvões produzidos a partir da torta de mamona com ZnCl₂ apresentaram capacidade adsortiva superior a 80% para o verde brilhante, com os carvões produzidos sem agitação obtendo melhores eficiências de adsorção para os demais corantes avaliados.

Conclusões

O processo de carbonização por radiação microondas foi simples, envolvendo reagentes e equipamentos de baixo custo. O material obtido tem potencial para diferentes aplicações tecnológicas.

Agradecimentos

CNPq, FAPEMIG.

¹ Rosillo-Calle, F., Bajay, S., Rothman, H., Uso da biomassa para a produção de energia na indústria brasileira, Editora Unicamp, Campinas, SP, 2005.