Chemical constituents and antiproliferative activity of *Rhinella marina* "Sapo Cururu" from Southern Amazon

Bryan W. Debiasi¹ (IC), Armênio A. C. A. Silva² (PG), Janaína C. Noronha¹ (PG), Livia Q. Sousa (PG)³, Domingos J. Rodrigues¹ (PQ), Paulo M. P. Ferreira³ (PQ), Cláudia Pessoa⁴ (PQ), Gardenia. C. G. Militão⁵ (PQ), Teresinha G. Silva⁶ (PQ), Gerardo Magela Vieira Jr¹* (PQ)

¹Institute of Natural, Humanities and Social Sciences, Federal University of Mato grosso, 78557-267, Sinop, MT, *gerardovieira@yahoo.com.br ²Departament of Chemistry, Federal University of Piauí, 64049-550, Teresina, PI

³Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, PI

⁴Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, CE

⁵Department of Physiology and Pharmacology, Federal University of Pernambuco, 50670-901, Recife, CE

⁶Department of Antibiotics, Federal University of Pernambuco, 50670-901, Recife, CE

Keywords: Rhinella marina, alkaloid, steroids, antiproliferative activity

Introdução

The skin secretions and venom of amphibians are rich sources of bioactive compounds, such as peptides, alkaloids, bufadienolides, biogenic amines and proteins. These molecules play a crucial role in the physiological functions of these animals, especially for predation and protection against microorganisms.^{1,2} Previous studies of our group with R. marina venom resulted in the identification by LC-MS of the four bufadienolides: telocinobufagin (1), marinobufagin (2), bufalin, and resibufogenin.³ As part of our ongoing research on bioactive compounds from Brazilian poison frogs, the objectives of the present study were investigated the chemical composition and the antiproliferative effect of the compound 2 from venom of R. marina found in Southern Amazon.

Resultados e Discussão

Toad venom was collected from the secretion of R. marina in Mato Grosso State, Brazil. The animals were identified by one of the authors (D. J. Rodrigues - IBAMA, SISBIO: number 30034-1). Voucher specimen (R. marina - ABAM-H 1262) was deposited in the Acervo Biológico da Amazônia Meridional (Sinop, Mato Grosso, Brazil). The MeOH extract (1.1 g) from venom was chromatographed on Sephadex LH-20 column, using MeOH as eluent. The fractions 31 (178.4 mg) and 75 (14.0 mg) yielding the compounds 3 and 2+4 (34:66), respectively. Fraction 66 (173.1 mg) was subjected to SiO₂ column, using hexane/AcOEt as eluent. The subfractions 91, 112, 113 and 128 yielding the compound 2 (23.1 mg) and the subfraction 140 the compound 1 (25.7 mg). Compound 2 was evaluated in a variety of tumor cell lines using the colorimetric MTT assay (Table 1).⁴ The compounds (Figure 1) were identified by spectrometric methods (mass, NMR ¹H and ¹³C). The bufadienolides **1** and **2** were reported previously in R. marina venom and were identified as telocinobufagin and marinobufagin, respectively.^{1,3} The substances ${\bf 3}$ and ${\bf 4}$ were identified as an alkaloid and a steroid, named dehydrobufotenine and cholesterol, respectively, Bufo marinus.^{5,6} previously reported in The

38ª Reunião Anual da Sociedade Brasileira de Química

compound 2 revealed higher cytotoxic activity when compared to doxorubicin (0.3 μ g mL⁻¹), with IC₅₀ values of 0.07 μ g mL⁻¹ (HL-60 and HCT-116), 0.12 $\mu g m L^{-1}$ (OVCAR-8) and 0.18 $\mu g m L^{-1}$ (SF-295) (Table 1).

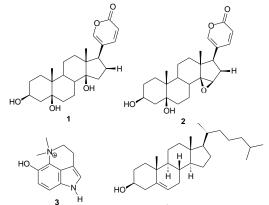


Figure 1. Chemical constituents isolated from R. marina

Table 1. Cytotoxic potential (IC_{50} in $\mu g mL^{-1}$) of 2 on h	numan tumor
cell lines after 72 h of exposure.	

Compoun d/Cell	HL-60	SF-295	HCT-116	OVCAR-8	HEP-2	NCIH292		
2	0.07 0.06-0.08	0.18 0.16-0.21	0.07 0.05-0.08	0.12 0.09-0.13	2.9 2.0-4.1	1.1 0.7-1.9		
Positive control: doxorubicin (0.3 µg mL ⁻¹)								

Conclusões

The chemical study of the R. marina venom resulted isolation of four compounds. in the two bufadienolies, an alkaloid and a steroid. Compound 2 showed potent cytotoxicity against tumor cell lines.

Agradecimentos

CNPg and FAPEMAT for financial support.

⁴Mosmann T. J. Immunol. Methods. **1983**, 16, 55.

¹Gao, H.; Zehl, M.; Leitner, A.; Wu, X.; Zhimin, W.; Kopp, B. J. Ethnopharmacol. 2010, 131, 368.

²Yang, J.; Zhang, Y.H.; Miao, F.; Zhou, L.; Sun, W. Fitoterapia. 2010, 81 636

³Ferreira, P. M. P.; Lima, D. J .B.; Debiasi, B. W.; Soares, B. M.; Machado, K. C.; Noronha, J. C.; Rodrigues, D. J.; Sinhorin, A. P.; Pessoa, C.; Vieira Jr., G. M. Toxicon. 2013, 72, 43.

⁵Chen, C.; Osuch, M. V. Biochem. Phamacol. 1969, 18, 1797. ⁶Märki, F.; Robertson A. V.; Witkop, B. J. Am. Chem. Soc. 1961, 83 3341.