# Two New Zinc(II) and Copper(II) Complexes Based on 1, 2, 4-Triazole Carboxylic Ligand

Catiúcia R. M. O. Matos<sup>1</sup> (PG), Sérgio Pinheiro<sup>2</sup> (PQ), Marcus P. F. Silva<sup>2</sup> (PG), Célia M. Ronconi<sup>\*1</sup> (PQ)

## catiuciarmom@gmail.com and cmronconi@id.uff.br

<sup>1</sup>Laboratório de Química Supramolecular e Nanotecnologia and <sup>2</sup>Laboratório de Síntese Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, CEP 24020-141 Niterói, RJ, Brazil.

Keywords: 1, 2, 4-triazole, tetranuclear Cu(II) complex, Zn(II) complex.

#### Introduction

Triazoles are extensively used in clinics and are promising owing to their antifungal, anticancer, and antibacterial properties.<sup>1</sup> To enhance the role of biological activities, several 1, 2, 4-triazole complexes based on bio-active metal have been designed as potential drugs due to DNA binding ability.<sup>2</sup> Copper and zinc(II) are known as essentials elements which are inserted in many biological processes, e.g., metalloproteins/enzymes active sites.<sup>3</sup> The anti-inflammatory activity of the 1, 2, 4-triazole L<sup>1</sup> was previously investigated and showed medium edema inhibition.<sup>4</sup> In this work we describe the syntheses and crystal structures of two zinc (II) and copper (II) complexes based on 1, 2, 4-triazole L<sup>1</sup> ligand.

## **Results and Discussion**

The synthetic rout to obtain  $L^1$ ,  $L^2$  and the two complexes ( $L^1$ -Zn and  $L^1$ -Cu) is represented in the Scheme 1.

Scheme 1: The synthesis of the investigated compounds.



The nucleophilic addition of 2 to the protonated carbonyl **1** affords the  $L^1$  in a yield of 15%.<sup>4</sup> Zinc (II) and copper (II) complexes were obtained by the addition of an aqueous solution of 3 and 4 to a methanol solution of  $L^1$  under stirring. The  $L^1$  and both complexes were characterized by single crystal X ray diffraction and ATR-IR. In addition, L<sup>1</sup> and L<sup>1</sup>-**Zn** were characterized by Raman spectroscopy, <sup>1</sup>H NMR and thermal analyses. The structural analyses show that  $L_{1}^{1}$  crystallizes in the P4<sub>3</sub> space group as a zwitterion  $L^{z}$ , Figure 1(a).  $L^{1}$ -Zn crystallizes in the P2<sub>1</sub>/n space group with two H<sub>2</sub>O molecules in the axial position and two L<sup>1</sup> oppositely arranged forming a helical axis in the equatorial base. An octahedral geometry is observed for the Zn (II) center. The carboxylate group of L<sup>1</sup> coordinates in a monodentate mode and along with the coordination

38ª Reunião Anual da Sociedade Brasileira de Química

of N4 to Zn (II) results in a six-membered ring, Figure 1(b).

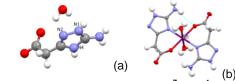



Figure 1. Structural representation of (a) L<sup>z</sup>; (b) L<sup>1</sup>-Zn.

The L<sup>1</sup>-Cu crystallizes in a triclinic  $P\bar{1}$  space group as a hydroxo-bridged tetranuclear copper(II) complex, Figure 2. The Cu2 center exhibits a distorted octahedral geometry and acts as a bridge connecting four subunits, Figure 2(b). Cu1 center has a distorted octahedral geometry, Cu3 an octahedral geometry and Cu4 a square pyramidal geometry, Figure 2(a). Jahn-Teller effect is present in this compound. The carboxylate group of L<sup>1</sup> coordinates in a monodentate mode and N1 and N2 coordinates to the different Cu (II) centers, while N4 is protonated and uncoordinated as was found for L<sup>2</sup>.

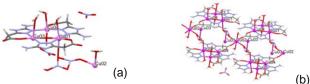



Figure 2. (a) Structure of the tetranuclear subunit. (b) Four subunits connected through Cu2 forming a discrete structure for  $L^1$ -Cu.

#### Conclusions

We successfully obtained two new 1, 2, 4-triazole carboxylic complexes with different coordination modes for  $L^1$  when coordinated to Cu(II) and Zn(II) metal centers.

### Acknowledgments

CAPES, PPGQ-UFF, LAME, LAMATE, LDRX-UFF.

<sup>&</sup>lt;sup>1</sup> Prasad, H. S. N.; Karthik, C. S.; Mallesha, L. and Mallul, P. Asian J. Pharm, Anal. Med. Chem. **2014**, *2*, 214-229.

Pharm. Anal. Med. Chem. **2014**, 2, 214-229. <sup>2</sup> Tabassum, S.; Asim, A.; Arjmand, F.; Afzal, M. and Bagchi, V. Eur. J. Med. Chem. **2012**, 58, 308-316.

<sup>&</sup>lt;sup>3</sup> Gup, R.; Gokce, C. and Akturk, S. Spectrochim. Acta, Part A. 2015, 134, 484.

<sup>&</sup>lt;sup>4</sup> Abdel-Megeed, A. M.; Abdel-Rahman, H. M.; Alkaramany, G.-E. S.; and El-Gendy, M. A. *Eur. J. Med. Chem.* **2009**, *44*, 117.