Brazilian Amaryllidaceae: a source of acetylcholinesterase inhibitory alkaloids

<u>Jean P. de Andrade^{1,4}(PQ)</u>, Raquel B. Giordani²(PQ), Laura Torras-Claveria¹(PQ), Natalia B. Pigni¹ (PQ), Strahil Berkov¹(PQ), Eduardo Konrath²(PQ), Kelly Bueno²(PG), Liana G. Sachett²(PG), Julie H. Dutilh³(PQ), Warley S. Borges⁴(PQ), Francesc Viladomat¹(PQ), Jerald J. Nair¹(PQ), Amelia T. Henriques²(PQ), José A. S. Zuanazzi²(PQ), Jaume Bastida¹*(PQ). * <u>jaumebastida@ub.edu</u>

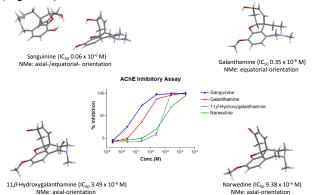
1. Facultat de Farmàcia, Universitat de Barcelona (UB), 643 Diagonal Av. Barcelona - 08028, Spain.

2. Faculdade de Farmácia, UFRGS, 2752 Ipiranga Av. Porto Alegre - 90610-000, Brazil.

3. Departamento de Botânica, Universidade de Campinas, Cidade Universitária, Campinas - 13083-970, Brazil.

4. Departamento de Química, Universidade do Espírito Santo, 29075910, Vitória, ES.

Keywords: galanthamine, GC-MS, Hippeastrum, sanguinine, X-ray crystallography.


Introduction

Nine Brazilian Amaryllidaceae species were studied for their alkaloid composition acetylcholinesterase (AChE) inhibitory activity via GC-MS and a modified Ellman assay, respectively. A total of thirty-six alkaloids were identified in these plants, of which Hippeastrum papilio and H. glaucescens exhibited the highest galanthamine content and the best IC₅₀ values against AChE. Furthermore, H. vittatum and Rhodophiala bifida also showed notable AChE inhibitory effects. X-ray crystallographic data for four galanthamine-type compounds revealed significant differences in the orientation of the N-methyl group, which are shown to be related to AChE inhibition.

Results and Discussion

Thirty-six well-known Amaryllidaceae alkaloids were identified by GC-MS. *H. papilio* and *H. glaucescens* showed highest levels of galanthamine. Bulbs and leaves of *H. papilio* exhibited values of 0.51% (\pm 0.012) and 0.33% (\pm 0.007), respectively (mg GAL/100mg DW). Both species presented the lowest IC₅₀ values for AChE inhibitory activity along with *H. vittatum* and *R. bifida*, in which elevated levels of montanine were detected.

AChE inhibitory activity was also carried out for galanthamine-type derivatives. Galanthamine and sanguinine were the most active AChE inhibitory alkaloids (IC₅₀ 0.35 and 0.06 µM, respectively). Narwedine and 11^β-hydroxygalanthamine showed IC₅₀ values of 9.38 and 3.49 µM, respectively. Docking studies were inconclusive concerning the effects of the N-methyl group orientation into the AChE site gorge¹. The X-ray data for galanthamine and narwedine were in agreement with those of previously reported¹ and crystallographic data for sanguinine and 11β -hydroxygalanthamine are reported here for the first time. Interestingly, narwedine and 11β -hydroxygalanthamine showed an axial orientation for the NMe group, opposite to that seen for galanthamine. Sanguinine (the most potent AChE), exhibited both orientations for the NMe group (Figure 1).

Figura 1. Acetylcholinesterase inhibition curve and X-ray structures of sanguinine, galanthamine, 11β -hydroxygalanthamine and narwedine showing the *N*-methyl orientation.

Conclusions

Some indigenous Brazilian species are shown to produce high quantities of the AChE inhibitors galanthamine and montanine. Galanthamine levels in leaves and bulbs of *H. papilio* were higher than those found in *Leucojum*, *Galanthus* and *Narcissus*, species traditionally recognizable for commercial exploitation^{2,3}. It is known that *N*-methyl conformers interchange rapidly in the naturally bound ligand, thereby restricting *N*-methyl orientation to a secondary role in new drug design. Nevertheless, further protein-ligand crystallography and proteinligand docking studies should clarify the exact role of *N*-methyl orientation in galanthamine-type alkaloids.

Aknowledgments

Generalitat de Catalunya (2009 – SGR1060) and BECAS-MAEC-AECID (Spain); CNPq (Brazil)

¹ Bartolucci, C.; Perola, E.; Pilger, C.; Fels, G. and Lamba, D. Proteins. 2001, 42, 182

² Cherkasov, O.A. and Tolkachev, O.N. In: Hanks G (ed) Medicinal and Aromatic Plants – Industrial Profiles: *Narcissus* and Daffodil, The Genus *Narcissus*. **2002**, *pp242-255*.

³ Berkov, S.; Bastida, J.; Nikolova, M.; Viladomat, F. and Codina, C. *Phytochem. Anal.* **2008**, *19*, 411.