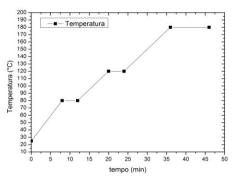
Determinação de Na e K em biodiesel de babaçu por espectrometria de absorção atômica utilizando digestão ácida como preparo de amostra

Luís Eduardo Bernardes¹ (PG), Márcia A. M. S. da Veiga¹ (PQ)*, marcia.veiga@usp.br

1 Departamento de Química FFCLRP, Universidade de São Paulo

Palavras Chave: biodiesel, sódio, potássio, absorção atômica


Introdução

A utilização de biocombustíveis para reduzir a dependência do petróleo e seus derivados reflete não apenas a crescente demanda energética como também a preocupação com o meio ambiente. O biodiesel configura como uma das principais fontes renováveis de energia e que permite reduzir o lançamento de poluentes através da emissão regulada, uma vez que atua no fechamento do ciclo do carbono e o gás carbônico emitido é novamente capturado via fotossíntese. A presença de Na e K no biodiesel decorre da remoção incompleta dos catalisadores empregados no processo produtivo. Assim como para outros elementos do biodiesel, o controle e a quantificação de Na e K são necessários, pois sua presença afeta a qualidade do combustível e pode danificar e comprometer o desempenho do motor.

Neste trabalho, foi feita a determinação de Na e K em amostra de biodiesel de babaçu por espectrometria de absorção atômica utilizando como etapa de preparo de amostra a digestão ácida assistida por micro-ondas.

Resultados e Discussão

A digestão do biodiesel foi feita empregando-se forno de micro-ondas de alta pressão da Milestone. Para otimização da digestão da amostra foram testadas diferentes proporções de HNO_3 e H_2O_2 , seguindo o programa de temperatura da Figura 1. As proporções ácido:peróxido testadas foram de 6:4, 7:3 e 8:2.

Figura 1. Programa de temperatura para digestão da amostra de biodiesel.

O digerido resultante foi avolumado para 40 mL, a partir dos quais foram feitas as determinações de Na e K por espectrometria de absorção atômica em chama, utilizando equipamento ContrAA 700 (Analytik Jena).

Tabela 1. Concentrações médias obtidas para as amostras submetidas ao mesmo programa de temperatura de digestão.

Ехр	Na, μg/g	SD	Exp	K, μg/g	SD
6:4	10,5	0,5	6:4	3,16	0,07
7:3	12,8	2,6	7:3	7,16	0,70
8:2	11,5	2,1	8:2	3,58	0,56

Tabela 2. Limites de detecção (LOD) e quantificação.

	Na, μg/g		K, μg/g	
	LOD	LOQ	LOD	LOQ
6:4	0,39	1,2	0,11	0,33
7:3	0,51	1,5	0,8	2,4
8:2	0,15	0,45	0,63	1,9

Conclusões

Melhor precisão foi obtida para o experimento 6:4, tanto para Na quanto K. O melhor limite de detecção para Na foi obtido na condição 8:2, enquanto que para K foi na condição 6:4. Novos experimentos serão conduzidos com um número maior de amostras.

Agradecimentos

FAPESP, CAPES, CNPQ

¹ E. S. Chaves et al; J. Braz. Chem. Soc. 19 (2008) 856-861.

² Fernanda H. Lyra et al; Microchemical Journal 96 (**2010**) 180-185.