Phytochemical screening, antioxidant and toxicity activities of Caesalpinia peltrophoroides Bent. flowers

Jacqueline Kerkhoff¹ (PG), Thaise de Oliveira Gomes¹ (IC), Daniela Barros Guimarães¹ (IC), Larissa Cavalheiro¹ (PG), Adilson Paulo Sinhorin¹ (PG), Gerardo Magela Vieira Júnior¹¹ (PG)

¹Institute of Natural, Humanities and Social Sciences, Federal University of Mato grosso, 78557-267 Sinop, MT, *gerardovieira@yahoo.com.br

Keywords: Caesalpinia peltrophoroides, phytochemical screening, antioxidant activity, toxicity

Introduction

The second highest number of medicinal plants in the world belongs to Fabaceae family. This family is found in Brazil and it’s constituted by 210 genera and 2694 species.¹ One of its members, Caesalpinia peltrophoroides, is popularly known as “Sibipiruna” or “False Pau-Brazil”. The bark of C. peltrophoroides is popularly used to treat dysentery and the literature reports studies on antimalarial activity.²,³ However, the knowledge about the chemical components of its flowers, and biological activities is absent. This study aimed qualitative evaluation of the chemical constituents, determine the antioxidant activity and toxicity against Artemia salina in ethanol extract (EEtOH), ether (FH), tannins in saponins, ethanolic acetate (H), hexane (F), ethyl acetate (FET), ethyl acetate (FA) and hydromethanol (FHM) fractions obtained from C. peltrophoroides flowers.

Results and Discussion

The ethanol extract of C. peltrophoroides flowers was partitioned with hexane, ether and ethyl acetate. The ethanol extract and the fractions were analyzed by phytochemical tests to identify the main classes of secondary metabolites.⁴ Antioxidant activity of extract and fractions of the flowers was determined according to the method described by Sousa et al., 2007,⁵ based on the capacity to scavenge the free radical 2,2-diphenyl-1-picryl-hidrazila (DPPH). The A. salina assay was performed according to the method described by Citó et al., 2003.⁶ These assay is considered a useful tool for preliminary assessment of toxicity.

The phytochemical tests showed the presence of phenolic compounds, tannins, saponins, alkaloids, steroids and triterpenoids (Table 1).

Antioxidant potential of the ethanol extract and partitions was compared with quercetin (positive control) (Figure 1). The FA (IC₅₀ = 36.09 µg mL⁻¹) fraction showed higher antioxidant potential when compared to quercetin (IC₅₀ = 37.06 µg mL⁻¹). The A. salina lethality test showed for EEtOH, FA and FHM LC₅₀ greater than 1000 ppm, it’s considered without toxicity. However, the FH and FET fractions showed LC₅₀ 303.7 and 87.2 ppm, respectively, demonstrating considerable toxicity.

Table 1. Phytochemical screening in Caesalpinia peltrophoroides flowers

<table>
<thead>
<tr>
<th>Extract/Test</th>
<th>Steroids and terpenoids</th>
<th>Flavonoids</th>
<th>Tannins and Phenols</th>
<th>Saponins</th>
<th>Alkaloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH</td>
<td>+</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FET</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>***</td>
</tr>
<tr>
<td>FA</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>***</td>
</tr>
<tr>
<td>FHM</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EEtOH</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Presence; - Absence; * Weakly; +++ Weakly reactive to 3 (Bouchardt, Dragendoorf Mayer); ++ Presence of hydrolyzed tannin; +++ Presence of condensed tannins

Figure 1. Antioxidant activity of the ethanol extract and fractions from C. peltrophoroides flowers.

Conclusions

The FA fraction demonstrated high potential antioxidant. FH and FET fractions showed significant toxicity against A. salina. These results can be used to further studies for the identification and isolation of the compound(s) responsible for these activities. According to phytochemical investigation, suggest that steroid, terpenoid, tannin and/or phenolic compound(s) may be responsible for these activities.

Acknowledgments

CNPq and UFMG for financial and laboratorial support.

References