Estudo da interação entre complexos trinucleares de rutênio com albumina de soro humano (HSA)

Natacha Cacita1 (PG), Sofia Nikolaou1 (PQ)*

*e-mail:sofia@ffclrp.usp.br

¹ Departamento de Química – Faculdade de Filosofia Ciências e Letras de Ribeirão Preto – Av. Bandeirantes, 3900, CEP 14040-901 - Monte Alegre - Ribeirão Preto - SP.

Palavras Chave: Cluster trinuclear de rutênio, albumina de soro humano, supressão de fluorescência

Introdução

No plasma sanguíneo existem diversas proteínas, a mais abundante é a albumina. Esta proteína atua em vários processos fisiológicos, entre eles a regulação da pressão osmótica, transporte, distribuição e metabolismo de diversos ligantes, como por exemplo fármacos, metabólitos e ácidos graxos, além de ser responsável pela regulação do pH. A albumina é sintetizada e liberada pelas células do fígado¹. A técnica de espectroscopia de fluorescência é muito utilizada para o estudo de interação com proteínas. A HSA, em particular, possui três resíduos de aminoácidos que absorvem na região do UV e emitem fluorescência, são eles: fenilalanina, tirosina e triptofano. O perfil dessa redução de fluorescência pode evidenciar a região na qual estão ocorrendo modificações ou interações envolvidas no processo². Neste sentido este trabalho tem por objetivo investigar a interação entre HSA e complexos [Ru₃O(CH₃COO)₆(3-pic)₂(NO)]⁺ e [Ru₃O(CH₃COO)₆(3-pic)₂(H₂O)]+, utilizando a técnica de espectroscopia de fluorescência.

Resultados e Discussão

complexos estudados foram previamente sintetizados e caracterizados3, Figura 1.

Figura 1: Estrutura dos complexos (A) [
$$Ru_3O(CH_3COO)_6(3\text{-pic})_2(NO)$$
]⁺ e (B) [$Ru_3O(CH_3COO)_6(3\text{-pic})_2(H_2O)$]⁺

Os espectros de emissão de fluorescência, foram obtidos titulando-se a solução do complexo em tampão com uma solução estoque de albumina.

Utilizando a equação de Stern-Volmer, foi possível determinar a constante de supressão bimolecular (K_{sv}) e a constante de ligação (K_b) dos complexos, Tabela 1.

Os experimentos foram realizados em diferentes temperaturas, o que possibilitou o cálculo dos

parâmetros termodinâmicos (ΔS , ΔH e ΔG), utilizando a equação de van't Hoff.

Tabela 1: Constantes de supressão bimolecular (Ksv) e constante de ligação (Kb) obtidas para a interação entre os complexo e HSA.

	Α		В	
T (K)	Ksv	Kb	Ksv	Kb
	(10 ⁴ molL ⁻¹)	(10 ³ molL ⁻¹)	(10 ⁴ molL ⁻¹)	(10 ³ molL ⁻¹)
298	2,68	6.31	4,67	12.88
303	4,86	23.44	5,18	8.71
308	6,77	134.89	5,31	4.78

Os valores de Kb obtidos mostram que existe uma forte interação entre os complexos e a HSA. A constante ligação para de 0 $HSA/[Ru_3O(CH_3COO)_6(3-pic)_2(NO)]^+$ aumenta com o aumento da temperatura, o que caracteriza uma supressão predominantemente do tipo estática, uma vez que a estabilidade da ligação aumenta com o aumento da temperatura, este fato implica que o complexo pode ser estocado e transportado pelo corpo humano pela HSA. Já para o sistema HSA/[Ru₃O(CH₃COO)₆(3-pic)₂(H₂O)]⁺, os valores de Kb diminuem com o aumento da temperatura, caracterizando uma supressão predominantemente cinética, dificultando o estoque e transporte deste complexo pela HSA.

Conclusões

Para as espécies estudadas, foi observado supressão de fluorescência com o aumento da concentração do complexo, a razão da reação foi de 1:1 HSA:complexo e a interação é um processo espontâneo $(\Delta G>0)$. Para Ω complexo $[Ru_3O(CH_3COO)_6(3-pic)_2(NO)]^+$ são predominantes forças de interação hidrofóbicas (ΔS e ΔH>0) e para o complexo [Ru₃O(CH₃COO)₆(3-pic)₂(H₂O)]⁺ ligação hidrogênio e/ou forças de Van der Waals (ΔS e $\Delta H < 0$).

Os resultados destes estudos importantes para definir o modo de distribuição e de transporte dos complexos no plasma sanguíneo.

Agradecimentos

Os autores agradecem a CAPES, CNPg e FAPESP.

Cheng, Z. Mol. Biol. Rep. 2012, 39, 9493-9508.

Eftink, M. R. Biophysical and Biochemical Aspects of Fluorescence

Spectroscopy; Dewey, T. G., Ed.; Plenun Press, 1991; pp. 1–41. Cacita, N., Possato, B., Silva, C. F. N., Paulo, M., Formiga, A. L. B., Bendhack, L. M., Nikolaou, S. *Inorganica Chimica Acta* (3) SUBMETIDO Dez/2014.