Citotoxicidade dos constituintes químicos obtidos do óleo volátil de Lippia alba (Verbenaceae)

Nara Oshiro dos Santos (PG)¹, Ricardo A. Azevedo (PG)², Adilson K. Ferreira (PG)², Carlos R. Figueiredo (PG)², Alisson L. Matsuo (PQ)², João H. G. Lago (PQ)¹, Marisi G. Soares (PQ)³, Patricia Sartorelli (PQ)¹.

¹ Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema/SP; ² Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Campus São Paulo/SP; ³ Instituto de Química, Universidade Federal de Alfenas, Alfenas/MG.

*e-mail: patty.sart@gmail.com

Palavras Chave: Lippia alba, atividade citotóxica, monoterpenos

Introdução

A busca por compostos naturais biologicamente ativos mais efetivos e menos tóxicos que as drogas comumente empregadas vem ganhando destaque, tanto que, a maioria dos fármacos introduzidos no tratamento de neoplasias nas últimas décadas tem sua origem nos produtos naturais¹.

Lippia alba (Mill.) N.E. Brown (Verbenaceae), conhecida popularmente como erva-cidreira, é um arbusto aromático utilizado na medicina popular devido às suas propriedades sedativa, analgésica, anti-inflamatória, diaforética, antipirética, antiespasmódica e emenagoga².

O presente trabalho teve como objetivo realizar a descrição da composição química do óleo essencial obtido das folhas da espécie *Lippia alba*, bem como avaliar a atividade citotóxica *in vitro* frente a linhagem celular de melanoma murino B16F10-Nex2.

Resultados e Discussão

Foram identificados 39 compostos do óleo essencial por CG-EM, sendo os constituintes majoritários os monoterpenos nerol (27,09%), metil-nerolato (21,87%) e 6-metil-5-hepten-2-ona (11,98%) (Figura 1). A composição do óleo essencial desta espécie já foi descrita, porém há grande variação química devido a fatores climáticos e geográficos³.

Figura 1. (A) nerol (27,09%), (B) metil-nerolato (21,87%) e (C) 6-metil-5-hepten-2-ona (11,98%).

A avaliação da atividade citotóxica *in vitro* indicou CI₅₀ de 45,8 µg/mL frente à linhagem B16F10-Nex2, 38^a Reunião Anual da Sociedade Brasileira de Química

e o controle positivo, a cisplatina, com Cl_{50} de 176,0 $\mu\text{g/mL}$. Após o fracionamento deste óleo, foram obtidas 61 frações reunidas em 11 grupos. Desses, os grupos OELA5, OELA7 e OELA8 apresentaram porcentagens de viabilidade celular inferiores a 3% quando testados a 100 $\mu\text{g/mL}$. Esses grupos foram analisados em CG e comparando os tempos de retenção com dados da literatura foram identificados os compostos majoritários de cada grupo (Tabela 1).

Em estudo para avaliar o potencial antitumoral do óleo essencial das folhas de *Lippia microphylla* frente às linhagens sarcoma 180 (linhagem murina) e K562 (leucemia mielóide crônica humana), este óleo apresentou Cl₅₀ de 100 μg/mL e de 60 μg/mL para essas linhagens, respectivamente, porém não foram identificados os compostos biologicamente ativos⁴.

Tabela 1. Constituintes majoritários dos grupos de frações mais ativos.

OELA5	OELA7	OELA8
Ácido oleico	Curzerenona	Silfiperfol-5-en-3-ol
(22,3%)	(24,6%)	A (32,2%)
Abienol	Silfiperfol-5-en-3-ol	(Z)-β-curcumen-
(12,2%)	A (23,3%)	12-ol (5,0%)

Conclusões

O estudo demonstrou que a citotoxicidade do óleo essencial das folhas de *L.alba* não é conferida pelos seus compostos majoritários e esses resultados estimulam a continuidade no estudo considerando a possibilidade de identificação da substância responsável pela atividade citotóxica frente à linhagem celular melanoma murino.

Agradecimentos

FAPESP, CAPES, CNPq

¹ Newman, D.J.; Cragg, G.M. 2007. J. Nat. Prod. **2007**, 70, 461-477.

² Lorenzi, H.; Matos, F.J.A. Instituto Plantarum. **2002**, 512p.

³ Corrêa C.B.V. Rev. Brasileira de Farmacognosia. **1992**, 73, 3, 57-64.

⁴ Xavier, A.L. Dissertação (Mestrado). UFPB, **2011**, 95p.