Sais de In(III) como Catalisadores em Reações de Acilação de Friedel-Crafts de Heterocíclicos Aromáticos

Gabriela Ferreira Matos¹ (PG), Rafael Pavão das Chagas¹ (PQ), Olga Soares do Rêgo¹* (PQ)

¹Laboratório de Síntese Molecular – LabSiM. Instituto de Química, Universidade Federal de Goiás, Campus Samambaia CP 131, CEP 74001-970 – Goiânia - Goiás.

Palavras Chave: acilação de Friedel-Crafts, triflato de índio.

Introdução

A acilação de Friedel-Crafts é uma metodologia sintética muito difundida para obtenção de cetonas aromática, principalmente devido ao uso destes intermediários na indústria de corantes farmacêuticos, fragrâncias e produtos agroquímicos. Uma das limitações desta metodologia é a grande quantidade de catalisador requerida neste processo, devido ao uso de ácidos de Lewis muito fortes, como AlCl₃, que complexam também significativamente com o grupo carbonila do produto, desativando o catalisador da reação. 1,2,3,4,5

A química sintética atual busca processos que sejam recicláveis, com economia de átomos e benigno para o meio ambiente. O uso de complexos de In(III) apresenta-se como alternativa eficiente nas reações de acilação de Friedel-Crafts com compostos aromáticos.⁶

O foco do nosso trabalho é obtenção de compostos heterocíclicos aromáticos monosusbtituidos na posição α (alfa) e também compostos dissubstituídos nas posições α,α' . Principalmente α -selenofeno e α -telurofeno que serão estudados quanto as suas propriedades e utilizados como intermediários sintéticos em nosso laboratório. Apresentaremos nossos primeiros resultados utilizando complexos de In(III), para formação de heterocíclicos α -substituídos.

Resultados e Discussão

Para obtermos a melhor condição reacional na síntese dos compostos 3, partimos de cloreto de 4-nitrobenzoíla como agente acilante, tiofeno e InCl₃ ou In(OTf)₃ como ácido de Lewis (**Esquema 1**).

Esquema 1. Reação de acilação catalisada por sais de In(III).

Estudaram-se as seguintes variáveis experimentais: temperatura, razão estequiométrica dos reagentes, tempo reacional e utilização de aditivos. A soma dos resultados obtidos até o momento permitiu

determinar como condição reacional ótima a Entrada I, apresentada na **Tabela 1**. É importante observar que nesta metodologia a adição do ácido tríflico proporcionou um aumento significativo do rendimento reacional. O produto foi obtido com alto grau de pureza, sem purificação prévia por coluna.

Tabela 1. Condições reacionais da reação de acilação.

Entrada	2 (mmol)	Y (mmol)	t (h)	T (°C)	3 (%)
Α	2,0	CI (0,1)	12	25	4,9
В	2,0	CI (0,3)	12	25	28
С	2,0	OTf (0,1)	12	25	18
D	2,0	OTf (0,3)	12	25	25,6
E	2,0	OTf (0,3)	24	25	40,8
F	2,0	OTf (0,3)	12	65	32,8
G	1,5	OTf (0,3)	12	25	40,8
Н	2,2	OTf (0,3)	12	25	34
I *	2,0	OTf (0,3)	12	25	88
J*	1,5	OTf (0,3)	12	25	75,5

^{*} Reação com adição de 0,3 mmol de ácido trífico.

Conclusões

A presente metodologia utiliza sais de In(III) como catalisador, com condições reacionais brandas, para a síntese de tiofenos aromáticos α-substituídos, normalmente difíceis de serem acilados através de uma reação de Friedel-Crafts clássica utilizando AICI₃. Pretendemos estudar o escopo desta reação para os demais heterocíclicos, furano, selenofeno, telurofeno e pirrol, e demais halogenetos ácidos alifáticos e aromáticos, e, posteriormente realizar um estudo para a síntese de heterocíclicos dissubstituídos.

Agradecimentos

IQ-UFG, CAPES, CNPQ, LabSiM.

¹ Opietnik, M.; Jungbauer, A.; Mereiter, K. e Rosenau, T. C. Org. Chem. **2012**, 16, 2739.

² Lee, C. H. e Lindsey, J. S. *Tetrahedron*. **1994**, 50, 11427.

³ Hartough, H. D.; Pitman, N. J. e Alvin, I. Pat, 1949.

⁴ Smyth, T. P. e Corby, B. W. J. Org. Chem. 1998, 63, 8946.

⁵ Gmouh, S.; Yang, H. e Vaultier, M. *Org. Lett.* **2003**, 5, 2219.

⁶ Chapman, C. J.; Frost, C. G.; Hartley, J. P. e Whittle, A. J. *Tetrahedron Lett.* 2001, 42, 773.